Микробиом человека. Pro et contra: хорошие бактерии против злых

Две тысячи лет назад Гиппократ справедливо отметил, что «все болезни начинаются в кишечнике». Последующие научные исследования многократно подтверждали его правоту и важность профилактики патологий данного органа.

В человеческом кишечнике содержатся триллионы микробов многих видов, которые метаболизируют пищу и облекают разнообразные нутриенты в доступные формы. Добавляя до 2 кг лишнего веса телу человека, дружественные бактерии защищают организм от «плохих» микробов, таких как столбняк, кишечная палочка и многие другие. Поэтому микробиом является основой человеческого здоровья.

«Вероятно, одной из самых важных услуг, которые предоставляют людям микробы, является иммунитет», - говорит Мартин Блазер, директор программы «Микробиом человека» в Медицинском центре Нью-Йоркского университета и председатель Консультативного совета при президенте США по борьбе с антибиотикоустойчивыми бактериями. Исследователь считает, что в течение десятилетий люди, не ведая о том, случайно уничтожали полезные микроорганизмы, посредством неверного поведения:

  • бесконтрольное и чрезмерное применение антибиотиков;
  • регулярное использование антибактериального мыла и т. п.

Мартин Блазер объясняет, что микробы, которые живут внутри человеческого организма, составляют огромное сообщество, и когда его баланс нарушается, «плохие» бактерии процветают и наносят урон здоровью людей.

Микробиом является предметом множества клинических испытаний и научных исследований. Их главная цель - изучение взаимосвязей между кишечной микрофлорой и болезнями.

Например, недавние исследования ученых из Мичиганского университета показали, что микробиом оказывает огромное влияние на иммунную систему животных и человека.

Интересно!

Роб Найт из Калифорнийского университета в Сан-Диего создал исследовательский проект American Gut. Это - крупнейшая в мировой истории научно-исследовательская программа, в рамках которой любой желающий может провести анализ своей кишечной микрофлоры и, в случае обнаружения инфекций, устойчивых к антибиотикам, «трансплантировать» нормальный микробиом. Процедура помогает заселить желудочно-кишечный тракт полезными микробами и гарантирует (на 90%) успех в борьбе с «плохими» бактериями.

В этой статье Вы узнаете, как поддержать здоровье микробиома самостоятельно.

1. Больше органических продуктов в рационе питания

Что человек может сделать, чтобы поддержать полезные бактерии? Самый надежный и действенный способ, позволяющий изменить состав микрофлоры кишечника в лучшую сторону - это избирательность в отношении продуктов, которые составляют ежедневное питание. Сертифицированные органические продукты с высоким содержанием клетчатки, ферментированные ингредиенты способны помочь в укреплении здоровья кишечника.

Не стоит опасаться, что натуральные продукты, выращенные фермерскими хозяйствами, на дачах, могут быть загрязненными, в отличие от произведенных в промышленных масштабах, где широко применяются антибактериальные препараты и различные химикаты для борьбы с вредителями и патогенами. Напротив, обработанные продукты включают синтетические компоненты, которые вредят хорошим бактериям.

Ученые все чаще говорят о том, что полезно есть растительные продукты прямиком с грядки. Например, в своей книге «Лечение грязью» нейропедиатр Майя Шетра-Клейн утверждает, что овощи, выращенные в здоровой почве, поддерживают баланс микробиома человека, способствуя укреплению здоровья.

2. Цельное зерно и другие источники клетчатки

Цельнозерновые и другие продукты, содержащие много пищевых волокон, богаты олигосахаридами, сложными углеводами, которыми питаются микроорганизмы. Это - пребиотики, которые в большом количестве содержатся в:

  • овсянке;
  • гречке;
  • коричневом рисе;
  • киноа;
  • цельной пшенице и т. д.

Они стимулируют рост полезных микробов гораздо эффективнее, чем очищенные зерна и просеянная мука. Министерство сельского хозяйства США (USDA) рекомендует употреблять 14 граммов клетчатки на каждую 1000 потребляемых калорий.

Профилактика предполагает постоянное присутствие пищевых волокон на тарелке. Регулярно добавляйте в свой рацион:

  • хлеб из цельной пшеницы (в порционном ломтике содержится около 3 граммов клетчатки);
  • несладкие плоды, ягоды с высоким содержанием клетчатки (например, среднее яблоко содержит около 3,5 грамма клетчатки);
  • съедобные водоросли;
  • овощи и т. п.

Натуральный йогурт является лидером по содержанию живых, активных бактериальных культур. Обычный стаканчик, около 160 г, скрывает миллиарды дружественных микробов.

Профессор медицины, микробиологии и иммунологии Университета штата Мичиган Мэри Х. Вейсер, утверждает, что ферментированные продукты, содержащие живые культуры, в том числе кефир, кимчи, квашеная капуста, моченые яблоки, огурцы и прочие овощи и фрукты помогают пополнить количественный состав микробиома и защитить «хорошие» кишечные бактерии.

4. Избегайте продуктов с искусственными подсластителями

По словам Эндрю Гевирта, эксперта из Центра воспаления, иммунитета и инфекций при государственном университете Джорджии, химические вещества, содержащиеся в искусственных подсластителях, вытесняют хороших бактерий и могут существенно увеличивать риски развития ожирения, а заодно всех сопутствующих ему заболеваний:

  • метаболический синдром;
  • диабет (2 тип);
  • атеросклероз;
  • кардиопатологии и др.

Многие готовые продукты питания, например, мороженое, пудинги, салатные заправки и т. п., приобретают гладкую, плотную консистенцию благодаря полисорбату 80 и карбоксиметилцеллюлозе (КМЦ). Данные химические вещества не найти в органических продуктах. Попадая в организм человека, они уничтожают кишечный микробиом, провоцируя воспаление. Эксперты называют синтетические эмульгаторы одними из основных виновников всплеска неинфекционной эпидемии метаболического синдрома в мире. Именно они повышают риски развития артериальной гипертензии, провоцируют развитие инсулинорезистентности.

6. Разумное применение антибиотиков

Статистические данные Всемирной организации здравоохранения выглядят довольно устрашающе, так как за последние 50 лет:

  • количество пациентов с ожирением выросло на 200%;
  • распространенность сахарного диабета увеличилась в семь раз;
  • показатели заболеваемости бронхиальной астмой выросли на 250%.

Многие ученые считают, что во многом виноваты антибиотики. Ведь каждое применение антибактериальных препаратов можно сравнить с «ковровой бомбардировкой» кишечной микрофлоры.

CDC сообщает, что третья часть всех эпизодов применения антибактериальной терапии - ошибочна, так как антибиотики используют против вирусов, которые просто не реагируют на них.

Нельзя заниматься самолечением, бесконтрольно употребляя антибактериальные препараты. Если взрослый или ребенок заболел, профилактика рекомендует «бдительное ожидание» под наблюдением врача. При подозрении на вирус специалист посоветует провести несколько дней дома и назначит симптоматическое лечение, чтобы убедиться, что организм самостоятельно борется с инфекцией.

Исследования, проведенные в Швейцарии в 1990-х годах и совсем недавно в США, продемонстрировали, что дети, растущие на небольших фермах, в непосредственном контакте с животными, гораздо реже страдают от симптомов аллергии и бронхиальной астмы. Возможно, это происходит потому, что животные «диверсифицируют» человеческие микробы. Некоторые ученые считают, что домашние животные обеспечивают аналогичные преимущества.

Излишняя чистоплотность может сыграть с человеком «злую шутку», снижая иммунитет и влияя на сопротивляемость инфекциям. Поэтому наука внесла в последние годы важные коррективы в гигиенические правила: не стоит постоянно мыть руки дезинфицирующими средствами или любыми косметическими продуктами, содержащими триклозан. Для профилактики достаточно воды и мыла без антибактериальных добавок.

Кроме провокации резистентности к антибиотикам, данное противомикробное вещество, также содержащееся в некоторых зубных пастах, коррелирует с повышением чувствительности к переносимым по воздуху и содержащимся в пищевых продуктах аллергенах.

«Диетологический» хит последних лет — палеодиета . Основной принцип прост: давайте кушать те же продукты, что и наши далекие предки из каменного века (2,6 млн — 10 тыс. лет до нашей эры) потребляли до изобретения сельского хозяйства. С какой стати? Гены человека развиваются куда медленнее, чем его мозг. По большему счёту, сегодня они — те же самые, что и в ту далекую эпоху, когда люди были охотниками и собирателями. А раз так — то современная пища нам категорически не подходит. Но наши тела — куда более гибкая штука, чем считают «палеодиетчики». Ведь в «диете каменного века» не учтён важный фактор: микробиом .


Микробиом — сообщество из триллионов бактерий, обитающих в нашем желудочно-кишечном тракте. Он весит порядка 1,4 кг — почти столько же, сколько и мозг. Бактерий очень много — по численности они обходят живые клетки человека в соотношении 9 к 1 . Создатель микробиомной диеты доктор в шутку говорит, что люди — всего лишь «бактерии в костюмах».

А бактериальных генов больше, чем человеческих, в 150 (!) раз . Часто влияние генов бактерий на нашу повседневную жизнь оказывается даже более значимым, чем в случае с «родным» геномом.

Когда микробиом сбалансирован, у нас есть очень сильный союзник. Благодаря «довольным» микробам тело остаётся здоровым, пищеварение — хорошим, мышление — ясным. Если же баланс нарушен, последствия не заставят себя ждать — спутниками вашей жизни станут или могут стать «туман» в голове, депрессия, тревожность, проблемы с кожей и бессонница, ожирение, диабет, рак…

Микробиомный подход расходится с палеодиетой в главном — в скорости. Да, человеческие гены меняются не так быстро (хотя и быстрее, чем думают наиболее ортодоксальные сторонники «палео»). А вот популяция сверхважного для нас микробиома меняется очень быстро — в течение всего одного дня!

«Жизненный цикл одного микроба — всего 20 минут. Этого вполне достаточно, чтобы весь ваш микробиом изменил свой состав». (Рафаэль Келман).

Вместе с составом меняются и гены. Вы можете проснуться в понедельник с одним набором микробиомных генов, а во вторник — уже с другим.

На популяцию микробиома влияет множество факторов: окружение, упражнения, сон, стресс. Но самый важный — питание.

«То, как вы питаетесь, определяет, какие микробы внутри вас живут «счастливо», а какие — вымирают и исчезают».

Сторонники палеодиеты, таким образом, перевернули всё с ног на голову. Речь не о том, что наши гены запрограммировали нас на то, что мы должны придерживаться только определенной диеты. Скорее, наш рацион питания «программирует» наш микробиом и его (очень важные для нас) гены .

Эксперимент


В 2011 году ученые из Гарварда и Университета Дюка провели крайне любопытное исследование. Добровольцам предложили две кардинально отличающиеся друг от друга диеты. Участники из первой группы питались пищей с высоким содержанием белка : беконом, яйцами, свиными ребрышками, грудинкой, салями, сыром и шкварками. Во второй группе ели очень много клетчатки — фрукты, овощи, злаки и бобы. Бактериальный анализ выделений показал большое — и практически мгновенное — влияние рациона на кишечные бактерии в обеих группах.

Началась выработка тех типов бактерий, которые помогли бы переваривать те виды пищи, которые люди только что съели. Всего за 24 часа «мясоеды» получили повышенную дозу бактерий, устойчивых к желчным кислотам (продукту, возникающему в процессе переваривания мяса). Если вы — мясоед, без таких бактерий не обойтись, и микробиом среагировал соответствующим образом. У «вегетарианцев» из второй группы таких бактерий было куда меньше — так как в них не было надобности.

Такая «гибкость» микробиома объясняет, почему наше тело столь быстро адаптируется почти к любой пище. Гены человека здесь ни при чём, нам нет нужды кивать на их медлительность. Природа дала человеку великолепный механизм выживания, который помогает ему привыкнуть к самым разным рационам питания.

«Микробиомные» продукты


Приверженцы палеодиеты уверены: люди не способны «переварить» злаки; более того, они — причина многих заболеваний. Доктор Келман не соглашается: цельнозерновые продукты предотвращают развитие сердечно-сосудистых заболеваний, ожирения и диабета. Положительный эффект проявляется в том числе и потому, что клетчатка из злаковых питает микробиом.

Теперь — самое интересное. Какая пища является «хорошей» для микробиома? Келман пишет, что составленный под микробиом рацион довольно разнообразен. Не нужно есть так уж много мяса — никаких 55% дневного потребления калорий, как предлагают «палеодиетчики», вашему микробиому не требуется. По последним научным данным, мясная продукция в больших количествах вредит нашим бактериям. Типичная еда западного мира — рафинированная мука, сахар, вредные жиры, добавки, консерванты и искусственные красители — также должна исчезнуть из рациона.

В свою очередь, обилие свежих, натуральных овощей, фруктов, бобовых и цельнозерновых продуктов — то, что приведёт ваш микробиом в неописуемый восторг. Спаржа, морковь, чеснок, топинамбур, батат, лук, лук-порей, редис, помидоры — это то, что должно быть на вашем столе как можно чаще. Очень хорошая добавка к рациону — ферментированная пища (корейская капуста кимчхи, наши родные квашеная капуста, соленья, кефир ). Это натуральные пробиотики , стимулирующие рост дружелюбных бактерий. Можно принимать и пробиотики в их «аптечной» вариации — капсулы, порошки и т.п.

Обложка книги Р. Келмана «Микробиомная диета»

Микробиомная теория объясняет хорошее самочувствие людей при самых разных рационах питания. К примеру, вы можете быть вегетарианцем, который в огромных количествах поглощает злаковые и бобовые — в палеодиете эта еда признается чуть ли не дьявольской — и ощущать себя «на все 100». Или питаться качественной, свежей едой с умеренными порциями куриного мяса и рыбы, небольшими «вкраплениями» говядины или баранины — и тоже чувствовать себя очень хорошо. Детали неважны. Самое главное — поддерживать своих маленьких приятелей внутри себя.

Эмблема проекта

Проект человеческого микробиома был инициативой национальных институтов здравоохранения США (National Institutes of Health, сокращенно NIH) с целью выявления характеристик микроорганизмов, которые встречаются как у здоровых, так и у больных людей.

А с чего все начиналось. Все началось с одного из сюрпризов, обнаруженных при работе проекта «Геном человека». Оказалось, что геном человека содержит только 25000 белок-кодирующих генов. Это примерно пятая часть того, что ожидали найти ученые. Чтобы обнаружить «недостающие части», которые могли бы объяснить это расхождение, исследователи начали искать другие источники генетического материала. Одним из таких источников был человеческий микробиом.
Микробиом — это сложный коллектив микроорганизмов. Причем количество клеток микробов в 3 раза больше клеток нашего тела. Таким образом, для изучения человека как «суперорганизма», состоящего из человеческих и микробных клеток и был запущен проект микробиома человека.
Создан проект в 2008 году. Это было пятилетнее исследование, общим бюджетом115 млн. долл.
Конечной целью этого исследования было проверить, как изменения в человеческом микробиоме связаны со здоровьем человека или болезнью.
Важным компонентом проекта «Микробиом человека» является обширное секвенирование генома, что обеспечивает глубокую генетическую перспективу по некоторым аспектам данного микробного сообщества.
До 2014 года в популярных средствах массовой информации и в научной литературе сообщалось, что в человеческом организме в 10 раз больше микробных клеток, чем в человеческих клетках.
В 2014 году Американская академия микробиологии опубликовала данные, что недавние исследования пришли к новой оценке человеческих клеток — 37 триллионов (против 100 триллионов бактерий). Что немного меняет соотношение — 3:1.
Многие из микроорганизмов, населяющих тело человека, не были ранее культивируемы и идентифицированы. Организмы микробиома человека представлены бактериями, архебактериями, дрожжевыми грибками, одноклеточными простейшими, также различными гельминтами и вирусами.
Проект микробиом человека рассматривается сейчас как «логическое концептуальное и экспериментальное расширение проекта «Геном человека».

Главные открытия Human Microbiome Project на сегодня:
— Микробы вносят больше генов, ответственных за выживание человека, чем собственные гены людей. По оценкам, бактериальных генов в 360 раз больше, чем наших с вами (микробы дают около 8 млн генов).
— Метаболизм различных биологических веществ, например, переваривание жиров, может осуществляться у разных людей разными видами бактерий. Все зависит от наличия гена, который умеет это делать. Проще говоря, неважно, как называется бактерия, а важно — что она умеет делать (поэтому у разных людей в одном биохимическом процессе участвуют разные бактерии).
— С течением времени состав человеческого микробиома изменяется,также под влиянием болезней и лекарственных средств. Однако состав микрофлоры в конечном итоге возвращается в состояние равновесия (хотя может меняться состав бактериальных генов).
— Выявлен переход к меньшему видовому многообразию во влагалищном микробиоме беременных женщин перед родами.
— Есть исследования о роли микрофлоры кишечника в различных заболеваниях пищеварительного тракта, кожи, половых органов.
— В фармацевтике рассмотрели последствия в отношении присутствия «нежелательных» микроорганизмов в нестерильных фармацевтических продуктах.

По сути, сегодня понятие микрофлоры кишечника или желудочно-кишечного тракта устарело, и в результате исследований и работы многочисленных ученых сегодня введено понятие микробиом как современное расширенное понятие микрофлоры и совокупности не только микробов, но и микробных генов!

В последние годы на передовые рубежи биомедицинской науки стремительно вышло изучение микробиома человека. Термин «микробиом» предложил в 2001 г. лауреат Нобелевской премии Джошуа Ледерберг (Joshua Lederberg) для обозначения суммы всех микробных сообществ, обитающих в организме человека.

Интерес мировой науки к изучению микробиома человека неуклонно возрастает. В 2007 г. Национальный институт здоровья США инициировал масштабный фундаментальный научный проект «Микробиом человека» (Human Microbiome Project), который объединяет разработки ученых из различных стран мира, в т.  ч. США (NIH), Австралии (CSIRO), Канады (CIHR), Китая (MOST), стран Европейского союза (MetaHIT Consortium), Сингапура и др.
Итоги десятилетней работы привели к серьезным изменениям во взглядах ученых на биологию человека и развитие многих заболеваний. Прогресс в изучении микробиома и в точке зрения на его роль в поддержании здоровья человека рассматривается как одно из наиболее значимых достижений современной биологии и медицины. В частности, редакция журнала Science в 2010 г. назвала изучение микробиома человека одним из десяти наиболее важных научных направлений первого десятилетия XXI в.

Микробиом человека имеет дискретную организацию и распределен по всем органам, сообщающимся с внешней средой. Фактически любая открытая поверхность человеческого тела заселена микроорганизмами, которые играют важную роль в поддержании иммунитета, обмене веществ, пищеварении и реализации других важных функций. Ротовая полость, желудок, кишечник, верхние дыхательные пути, мочеполовая система, кожа, глаза, волосы, нос, уши содержат свой собственный уникальный специфический и очень сложный микробный комплекс, состоящий из отличающихся друг от друга видов с определенным набором функций. Специфические микробиомы недавно обнаружены также в плаценте, легких и крови, то есть в органах и средах, ранее считавшихся стерильными.
Большинство микроорганизмов сконцентрировано в пищеварительном тракте (в ротоглотке, желудке и кишечнике содержится до 75% микробных популяций); мочеполовые пути у мужчин заселяют до 2-3% микроорганизмов, у женщин - до 9-12%; 13-23% микробиоты колонизирует все остальные биотопы. Только в толстой кишке взрослого человека насчитывается 1014-1015 клеток микроорганизмов (не менее 1012 микробных клеток на 1 г содержимого), что превышает число клеток тела человека почти на два порядка.
Каждый локальный микробиом характеризуется индивидуальным составом и функциями, на которые оказывают влияние анатомические и физиологические особенности заселяемого органа. Специфическая для конкретной экосистемы симбиотическая микробиота посредством конкуренции за сайты адгезии и путем стимуляции иммунных ответов защищает свой биотоп от патогенной колонизации посторонними микробами. Вместе с тем все микробные сообщества, обитающие в различных локусах тела человека, находятся в постоянном взаимодействии между собой и макроорганизмом, образуя единую надорганизменную систему.
Достижения современной биологии и медицины позволяют рассматривать микробиом как дополнительный орган человека, который, активно участвуя в пищеварении, многочисленных метаболических процессах, поддержании целостности эпителиального барьера, формировании колонизационной резистентности, обезвреживании эндо- и экзогенных токсинов, развитии и поддержании иммунной системы и ряде других физиологических функций, оптимизирует условия для нормального функцио-нирования организма человека в целом.
Давно признан факт, что традиционные микробиологические методы не в состоянии предоставить объективную информацию относительно видового разнообразия и популяционного уровня различных представителей микробиома человека, поскольку преобладающая часть прокариотических микроорганизмов (бактерий и архей) не культивируется в лабораторных условиях. С помощью классической методологии невозможно также проанализировать механизмы популяционных взаимодействий микробиоты, основанных на специфических сигнальных системах общения как внутри микробного сообщества, так и в ходе его взаимодействия с организмом человека. Поэтому еще недавно наши знания о составе симбиотической микробиоты, населяющей тело человека, были весьма скудными и противоречивыми.
Использование возможностей для изучения микрофлоры, ранее недоступной для исследований, изменило многие устоявшиеся взгляды на состав микробиома человека. Например, по результатам генетического анализа образцов, отобранных из различных биотопов здоровых добровольцев (15 мест на теле 129 мужчин и 18 - на теле 113 женщин), было установлено, что в организме человека обитает >10 тыс. видов различных микробов, включая бактерии, археи, грибы, простейшие и вирусы. При этом большинство видов бактерий и архей оказались некультивируемыми in vitro. Общая масса клеток всех представителей микробиома в среднем составляет 3% от массы тела человека. Таким образом, микробиом является одним из самых крупных органов человека.
Суммарное число генов микробиома (метагеном), по крайней мере, в 100 раз больше человеческого генома. Микробиом добавляет к примерно 30 тыс. генам человека еще около 12 млн дополнительных генов микробной природы. Такой огромный арсенал генных продуктов обеспечивает широкий набор различных биохимических и метаболических активностей, рацио-нально дополняющих физиологию организма человека.
Исходя из результатов исследований микробиома человек представляет собой «суперорганизм», где только 10% клеток принадлежит телу человека, а 90% - микробиому. Обмен веществ этого «суперорганизма» в значительной степени определяется ферментами, гены которых локализованы не в человеческих хромосомах, а в геномах симбиотических микробов.
Микробные симбионты человека обладают колоссальным ферментативным потенциалом. Благодаря удивительному видовому многообразию и огромному количеству клеточных популяций кишечный микробиом функционирует как мощный биореактор, контролирующий многочис-ленные метаболические функции, многие из которых все еще не распознаны. Он продуцирует тысячи важных и уникальных веществ, полезных для организма человека.
Фактически метаболические возможности микробиома сопоставимы с функциями печени. Симбиотические бактерии: осуществляют метаболизм плохо перевариваемых полисахаридов; продуцируют необходимые витамины; регулируют липидный обмен; способствуют развитию и дифференциации эпителия и иммунной системы; обеспечивают защиту от инвазии оппортунистических патогенов; выполняют ключевую роль по поддержанию гомеостаза эпителиальной ткани. Недавние исследования показали также, что микробиом человека влияет на развитие и гомеостаз других тканей организма, в т.  ч. костной ткани.
Разработка и внедрение в исследовательскую практику методов молекулярно-генетического анализа существенно расширили представления, касающиеся таксономии симбиотической микрофлоры человека. Применение новейших методов исследований, в частности геномного и метаболомного анализа, позволило достичь значительного прогресса в расшифровке таксономического и генетического разнообразия, понимании структуры и функциональной активности микробио-ма человека, его роли в поддержании или расстройстве здоровья.
Обширный анализ нуклеотидных последовательностей 16S рибосомальной РНК (рРНК), амплифицированных из фекальных образцов, был дополнен данными метагеномного секвенирования, что позволило составить общее представление о микробном разнообразии: у здорового человека доминируют бактерии, принадлежащие к типам Firmicutes (65-80% всех клонов), Bacteroidetes (около 23%) и Actinobacteria (около 3%). В меньших количествах присутствуют бактерии типов Proteobacteria (1%) и Verrucomicrobia (0,1%). Представители Actinobacteria и Firmicutes, к которым принадлежат роды Lactobacillus, Bifidobacterium и Propionibacterium, почти исключительно грамположительные, тогда как представители типов Bacteroi-detes и Proteobacteria в основном являются грамотрицательными.
До настоящего времени при рассмотрении симбиотической микробиоты человека основное внимание уделяется ее бактериальным представителям. Бактериальная флора действительно занимает самый большой сектор любого микробио-ценоза. Однако при этом незаслуженно недооценивается значимость других микроскопических обитателей биотопов, в частности архей, грибов, простейших и вирусов, которые при нормальном состоянии микробно-иммунологической системы вносят определенный вклад в выполнение микробиомом своих физио-логических функций.
Например, во всех биотопах человека в высокой концентрации содержатся вирусы. Расшифровка генома человека выявила в нем огромное количество вирусного генетического материала: не менее 11% генома человека составляют вирусные гены. В 2010 г. группа ученых из США и Австралии установила, что каждый человек обладает уникальным набором вирусов, обитающих в толстом кишечнике. С момента формирования микробио-ма ребенка одновременно с заселением биотопов бактериями происходит контаминация слизистых оболочек вирусами-симбионтами. Предположительно, вирусные представители биоценозов защищают макроорганизм от своих болезнетворных сородичей и повышают общую сопротивляемость ко многим неблагоприятным воздействиям. Вирусы бактерий - бактериофаги - принимают активное участие в контроле над поддержанием нормального бактериального баланса в биоценозе, а также обеспечивают механизмы генетических рекомбинаций посредством транс-дукции. Благодаря недавним исследованиям американских ученых была вы-двинута гипотеза о том, что бактериофаги, содержащиеся в огромных количествах в приэпителиальных биопленках, могут играть роль весьма важного компонента ответа на инфекции. Выяснилось, что отдельные поверхностные белки фаговых капсидов, своей структурой напоминающие иммуноглобулины, способны присоединяться к гликанам муциновых комплексов и формировать «бактериофаговый» защитный слой, предупреждающий транслокацию бактерий во внутреннюю среду организма («фаговый иммунитет»).
Для детального и объективного изучения взаимоотношений человеческого организма с его микросимбионтами в био-медицинскую науку внедрены новые молекулярные, генетические и биохимические методы (т.  н. «ОМИК»-технологии): геномика и метагеномика, эпигеномика и метаэпигеномика, транскриптомика, протеомика, метаболомика, феномика.
Сегодня уже известно, что процесс формирования микробиома начинается задолго до рождения ребенка и в этом процессе задействованы многочисленные механизмы, связанные со здоровьем матери (особенно с состоянием ее микро-био-ма, условиями протекания родов, формой вскармливания ребенка), а также факторы окружающей среды. По мере взросления и старения организма в составе микробиома наблюдаются замет-ные изменения, которые наиболее отчетливо проявляются в пожилом и старческом возрасте. Физиологические изменения, происходящие в теле человека с возрастом, в первую очередь выражаются в снижении биологических функций и способности приспосабливаться к стрессовым воздействиям. Все эти возрастные процессы протекают на фоне серьезных изменений в составе и функциональной активности микробиома. Человек преклонного возраста особенно уязвим к болезням, и в первую очередь связаннным со снижением функциональной активности микробиома.
Микробиом каждого человека индивидуален и уникален по составу. Ученые обнаружили, что не существует какого-то основного состава микроорганизмов, выполняющих определенные функции. Их могут осуществлять разные по составу микробные сообщества, обладающие подобными активностями. Индивидуальные таксономические характеристики микробиома формируются под воздействием многих факторов: местности, где проживает человек, его пищевых привычек, рода занятий, приема лекарственных средств и др. Микроорганизмы одного вида могут заменяться другими, используя при этом идентичную метаболическую стратегию.
Механизмы взаимосвязей между микробиомом и организмом человека исследованы пока недостаточно. Связи эти, без сомнения, очень сложны и включают взаимодействия между отдельными представителями самого микробиома, слизис-тым слоем желудочно-кишечного тракта и других биотопов, иммунной системой и эпителиоцитами.
Полноценный микробиом человека обладает огромным биологическим потенциалом для защиты макроорганизма и его метаболической поддержки. Здоровый микробный орган способен компенсировать достаточно высокий потенциал негативных факторов. И только в случае серьезного повреждения микробиома нагрузка переходит на иммунную систему и другие защитные органы, в которых при потере содействия со стороны физиологической микробиоты происходят патологические изменения, что и приводит к возникновению различных заболеваний и их серьезным осложнениям.
Установлено, что поврежденный микробиом становится фактором развития ожирения, жировой дистрофии печени, инсулинорезистентности, гиперхолестеринемии, аутоиммунных болезней (ревматоидного артрита, рассеянного склероза, псориаза и др.), воспалений в кишечнике, аллергии, отдельных видов рака и многих других острых и хронических патологий. Все больше появляется доказательств, которые дают основание признать связь между расстройствами психического здоровья и нарушениями микробиома. Этот вопрос был поставлен еще работами И. И. Мечникова, а в последние годы функциональный комплекс кишечник-мозг-микробиом интенсивно изучается.
Установлено, что ряд психиатрических заболеваний сопровождается микробиом-ными расстройствами, окислительным стрессом и увеличением уровня воспалительных цитокинов, в частности фактора некроза опухоли, интерлейкина-1 и -6. Предполагают, что на когнитивные способности и поведение благоприятное воздействие могут оказывать методы лечения, предусматривающие восстановление микробиома.
Патологически измененный микробиом зачастую служит пусковым механизмом в развитии болезни, способствует затяжному, хроническому ее течению с развитием метаболических и иммунных расстройств, формированием в организме резервуаров эндогенной инфекции различной этиологии и локализации, к которой легко могут присоединяться экзогенные возбудители, особенно вирусно-бактериальных или бактериально-грибковых микст-инфекций.
В терапии пациентов с такими расстройствами здоровья необходимо применение комплексных схем, в т.  ч. направленных на восстановление физиологических функций микробиома и повышение иммунобиологической активности организма.
Особую тревогу вызывает рост числа детей, страдающих тяжелыми микробиомными расстройствами с раннего возраста. Как известно, становление микрофлоры, происходящее на первом году жизни, закладывает фундамент для поддержания здоровья ребенка, его нормального роста и развития. К сожалению, в современных условиях характер первичной микробной колонизации претерпел критические изменения, что связано прежде всего с ухудшением репродуктивного здоровья молодого поколения, увеличением контингента женщин с перинатальными факторами риска, нерациональным медикаментозным лечением. Это приводит к неуклонному увеличению детей с первичными нарушениями в микробной экологической системе.
Именно с нарушениями становления микробиома связаны многие проблемы со здоровьем ребенка, возникающие на первом году его жизни и осложняющиеся в последующем. Дальнейшему углублению микробиомных расстройств, развитию и хронизации инфекционных и соматических заболеваний способствуют многочисленные факторы экологического, трофического, нервно-эмоционального, медикаментозного и другого характера - они оказывают существенное влияние на состояние микробиома человека любого возраста.
Эффективность терапии снижает и применение в лечении больных устаревших подходов, не учитывающих значительный вклад в развитие патологии нарушений в системе микробов-симбионтов. Накап-ливается все больше фактов, свидетельствующих, что ряд широко используемых фармацевтических препаратов губительно влияют на микробиом и иммунитет пациентов.
Вот почему лечение любого заболевания должно быть комплексным и обязательно предусматривать восстановление естественной защитной системы организма, основными составляющими которой являются микробная система, неразрывно с ней связанная иммунорезистентность и антитоксическая защита.
Поддержание физиологического состояния микробиома на всех этапах жизни человека - начиная с внутриутробного развития плода и до глубокой старости - играет значимую роль в улучшении здоровья популяции всех возрастных категорий. Современная наука вполне способна решить эту задачу.
Сегодня наиболее признанными средствами оздоровления микробиома, безусловно, остаются пробиотики, которые уже нашли широкое применение в составе многих лечебных и профилактических схем. При этом продолжают совершенствоваться технологии производства пробиотиков в направлении создания инновационных средств, обладающих направленными механизмами действия, что в перспективе позволит повысить эффективность методов лечения больных и поддержания здоровья в нормальном состоянии.
Благодаря многочисленным исследованиям, проведенным ведущими специалистами в различных областях микробиологии и медицины, удалось достичь значительного прогресса в изучении микробиома и достаточно успешно использовать научные достижения при разработке принципиально новых оздоровительных средств, эффективность которых убедительно доказана клинической практикой. Разработанная серия мультипробиотиков серии Симбитер® и энтеросорбентов серии Смектовит® в настоящее время широко используется в различных областях медицины.

Микробиом кожи – популярная тема. Практически каждую неделю появляются новые данные о том, что те или иные бактерии повинны в развитии дерматологических болезней, таких как акне, розацеа, псориаз и т.д.

А раз враг обнаружен, то его, понятно, следует тут же обезвредить, разработав инновационные косметические формулы и выпустив их на рынок.

Складывается впечатление, что сегодня поверхность кожи исхожена человеком вдоль и поперек, как поверхность Луны.

Почему же мы решили зайти на эту изведанную территорию?

Мы постоянно отслеживаем мировые тенденции в эстетической медицине и дерматологии и в последнее время не могли не отметить появляющиеся controversies вокруг темы микробиома.

В этой статье мы попытаемся разобраться, так ли они обоснованны, и где в этой теме кончается наука и начинается маркетинг?

Но сначала вернемся ненадолго в университет.

Кожа под микроскопом

По данным американских микробиологов (Grice 2011) , на коже находится 1,8 м 2 разнообразных мест обитания микроорганизмов, включая бактерии, грибы, вирусы, клещи.

Микрофлора делится на постоянную – резидентную (около 90 % микробов), факультативную (условно-патогенную) – около 9,5 % и случайную (транзиторную) – 0,5 %.

Согласно доктору медицинских наук Виктору Бондаренко, заведующему лабораторией генетики вирулентности бактерий Института эпидемиологии и микробиологии им. Н. Ф. Гамалеи РАМН, около 20 % микроорганизмов от общего числа обитает в полости рта (более 200 видов), 18–20 % приходится на кожные покровы, 15–16 % - на глотку, 2–4 % – на урогенитальный тракт у мужчин и примерно 10 % – на вагинальный биотоп у женщин, а больше всего микроорганизмов (до 40 %) – в желудочно-кишечном тракте (Бондаренко 2007) .

Микробиом кожи определяется такими факторами, как pH, температура, влажность, уровень выработки кожного сала, окислительный стресс, диета, инфекции. Кожа обладает высокой обновляемостью клеток, поскольку она постоянно противостоит воздействию внешних факторов.

Микробиом кожи меняется от человека к человеку. Уникальный профиль микробиоты человека задается в зависимости от «экониши», на него также влияет количество света и влажности/сухости, число волосяных фолликулов, пол и возраст (Krajewska-Włodarczyk 2017) .


Таблица 1. Кожный микробиом

Нормальная микрофлора

Патогенная микрофлора

  • Streptococcus viridans (стрептококк зеленящий) – нормальные обитатели полости рта, глотки, носа.
  • Staphylococcus aureus (золотистый стафилококк)
  • Staphylococcus saprophyticus (стафилококк сапрофитный) – самый мирный из стафилококков, основное его место обитания – это стенка мочевого пузыря и кожа вблизи гениталий, поэтому нетрудно догадаться, что он является возбудителем цистита, которому больше подвержены женщины.
  • Streptococcus pyogenes (стрептококк пиогенный, он же бета-гемолитический стрептококк группы А) – дает осложнения в виде ревматизма, поражая почки, сосуды мозга, сердце, суставы.
  • Staphylococcus epidermidis (стафилококк эпидермальный) – обитает в различных областях слизистых и кожных покровов. Эпидермис – поверхностный слой кожи, отсюда и название.
  • Streptococcus pneumoniae (пневмококк) – возбудитель пневмонии и менингита.
  • Staphylococcus haemolyticus (стафилококк гемолитический)
  • Pseudomonas aeruginosa (синегнойная палочка)
  • Грибы рода Candida
  • Klebsiella pneumoniae, ozaenae, rhinoscleromatis (клебсиеллы пневмонии, озены, риносклеромы)
  • Непатогенные виды бацилл, коринебактерии и др.
  • Yersinia enterocolitica, pseudotuberculosis (иерсинии энтероколита и превдотуберкулеза)

Известно, что сухие участки кожи на предплечьях, ягодицах и кистях активно заселены бактериями вида Actinobacteria, Proteobacteria, Firmicutes и Bacteriodetes. Удивительной особенностью микробиоты этих зон является обилие граммотрицательных организмов. Когда-то считалось, что они колонизируют кожу редко. Интересно, что на этих участках разнообразие бактерий больше, чем в кишечнике или полости рта одного и того же человека. Кроме того, микроорганизмы «привязаны» к текущему участку тела. И, пересаженные из одной среды обитания в другую, например, с языка на лоб, не способны колонизировать новую территорию или изменить существующее в этой области микробное сообщество (Costello et al. 2009) .

Как этому невидимому и густонаселенному миру удается относительно спокойно и мирно существовать друг с другом на таком ограниченном участке, как наша кожа?

Ответ кроется в гомеостазе.

Гомеостаз кожи

Чтобы эффективно выполнять свою защитную функцию (физического и иммунного барьера при стрессах, внешних вмешательствах или инфекциях), кожа полагается на механизмы непрерывного удаления мертвых клеток.

Это происходит в результате гомеостаза, когда на коже поддерживается баланс между иммунорегуляцией и толерантностью к внешней среде. Если это равновесие нарушается, иммунная система может нанести удар и начать патогенез (Belkaid 2014; Sil et al. 2018) .

Многие механизмы кожного гомеостаза до сих пор не до конца понятны и изучены, а то, что известно, подробно изложено в учебниках. Здесь, чтобы не цитировать страницы, мы опишем лишь некоторые важные открытия на пути к этому пониманию.

Если вы не хотите утомлять себя обилием терминов, то можете без вреда пропустить этот раздел.

Белок AhR и гомеостаз

Рецептор ароматических углеводородов AhR – это белок, который относится к лиганд-зависимым транскрипционным факторам и осуществляет регуляцию ферментов, способствующих метаболизму ксенобиотиков.

Он опосредует многочисленные биологические и токсикологические эффекты, индуцируя транскрипцию различных чувствительных к AhR генов.

Японские ученые исследовали роль этого белка и пришли к выводу, что он оказывает ряд функциональных воздействий на гомеостаз кожи (Furue et al. 2014) .

Они установили следующее:

  • AhR участвует в оксидативном стрессе. Например, кератиноциты выделяют AhR-комплекс, который взаимодействует с бензоапиреном и другими факторами окислительного стресса, что приводит к повреждению клеток. Бензоапирен – один из главных ингредиентов, выделяющихся при курении табака, и, возможно, есть связь между AhR и такими индуцированными табакокурением заоблеваниями кожи, как псориаз и пальмоплантарный пустулез.
  • AhR связан с эпидермальной функцией. Активация этого белка может приводить к индукции дифференцировки эпидермиса. Это значит, что может повышаться экспрессия филаггрина, лорикрина и хорнерина, а также происходить утолщение эпидермиса. Все это вкупе с нарушением микробиома кожи, связанного с бактериями Propionibacterium acnes, может приводить к развитию акнеподобных состояний кожи.
  • AhR может модулировать меланогенез, контролируя экспрессию меланогенных генов.

И это далеко не полный список реакций, в которых принимает участие этот белок, во многом его действие остается загадочным.


Сигнальный путь Wnt и гомеостаз

Немецкие ученые занимались изучением нарушений в передаче сигналов Wnt и его роли в поддержании барьерной функции кожи для ее правильного физического, биохимического и иммунологического функционирования (Augustin 2015) .

Они установили, что кожа является сложным динамическим органом с высоким клеточным обменом, при котором стволовые клетки обеспечивают постоянное обновление кожи. Сигнальный путь Wnt контролирует рост стволовых клеток и участвует в обновлении различных тканей. Нарушение передачи сигналов Wnt в коже вызывает такие нарушения, как алопеция, хронические воспалительные заболевания кожи или рак.

Транскрипционный фактор Foxn1 и гомеостаз

Много исследований было сосредоточено на клеточных и молекулярных механизмах, которые регулируют биологию кожи. Факторы транскрипции являются ключевыми молекулами, которые настраивают экспрессию генов и способствуют или подавляют транскрипцию гена. И эпидермис является ключевым источником транскрипционных факторов, которые регулируют многие функции эпидермальных клеток, такие как пролиферация, дифференцировка, апоптоз и миграция.

В одном из недавних исследований было установлено, что активация эпидермальных факторов транскрипции вызывает изменения в дерме кожи (Bukowska et al. 2018) .

Транскрипционный фактор Foxn1 играет особую роль в биологии кожи. Регуляторная функция Foxn1 связана с физиологическими (развитие и гомеостаз) и патологическими (заживление ран) изменениями. В частности, Foxn1 участвует в способности кожи регулировать образование рубцовой ткани, что может быть перспективно в регенеративной медицине.

Иммунный ответ второго типа

В развитии микробиома и регуляции бактерий, которые колонизируют поверхность кожи, решающее значение имеет иммунная система, а получаемые от микробов сигналы постоянно формируют и устанавливают ответ иммунных реакций.

Канадские ученые установили, что иммунный ответ второго типа лежит в основе развития атопии и аллергии. Микробы модулируют иммунные ответы типа 2 через воздействие на цитокины типа 2, дендритные клетки и регуляторные Т-клетки. Микробная колонизация в кишечнике, легких и коже в ранний период иммунного развития, по-видимому, имеет особое значение для развития толерантности и регуляции иммунных ответов, которые позднее могут быть связаны с аллергией (McCoy et al. 2018) .

Даже вышеприведенных немногочисленных данных достаточно, чтобы прийти к выводу о том, что микромир тонок, неоднозначен и непостоянен, а протекающая в этом мире бурная активность, взаимодействия и регуляция еще не до конца понятны.

Обозначим проблему

Хотя человек и изучил кожу, установил количественное соотношение микрофлоры, классифицировал и присвоил бактериям романтичные названия (вспомним глобальный проект «Микробиом человека», начатый в 2008 году), но нам так и не удалось установить причинно-следственные связи между этими процессами.

Однако набирают популярность мнения, что виной кожных болезней являются нарушения в микробиоме, иначе дисбаланс микроорганизмов.

Но так ли это на самом деле? Корректно ли делить бактерии на «вредных» и «полезных»?

Сначала немного статистики:

  • Установлено, что в 90 % случаев при атопическом дерматите происходит колонизация кожи Staphylococcus aureus, причем этому подвержены не только пораженные участки, но и участки здоровой кожи (Kong et al. 2012) .
  • При псориазе в очагах поражений обнаруживаются большие колонии Streptococcus и Propionibacterium (Statnikov et al. 2013) .
  • Вид Propionibacterium acnes долгое время рассматривался как важный провоцирующий механизм акне. Однако было выявлено, что в воспаленных фолликулах присутствуют не только P. acnes, но и другие бактерии, например Streptococcus epidermidis (Bek-Thomsen et. al 2008).
  • На Западе бушует эпидемия кожной аллергии, причем количество случаев, по оценкам ученых, значительно возросло за последние 5–10 лет (Wallen-Russell et al. 2017) .

Мы привели лишь крошечную часть данных. Исследования также показывают, что дисбаланс микрооорганизмов может лежать в корне и таких заболеваний, как синдром Крона, колиты и синдром раздраженного кишечника, аутоиммунные заболевания, склероз или диабет I типа (Campbell 2014) .

Конечно, при таких данных есть соблазн «свалить» всю вину за болезнь на бактерии.


Но почему есть сомнения?

Группа американских ученых (Wallen-Russell et al. 2017) высказала обоснованные сомнения новомодным течениям.

Они отметили следующее:

  1. До сих пор нет абсолютного способа измерения микробиома и оценки состояния здоровья кожи.
  2. Как понять, когда микробиом кожи является индикатором болезни кожи, а когда – ее здоровья?
  3. В природе именно биоразнообразие является гарантией стабильности среды, и при этом факторы окружающей среды также влияют на микробиом. Ученые проследили, например, что у предков человека кожа сильно отличалась от кожи «современного» человека (которая постоянно обрабатывается и улучшается) и показывала беспрецедентные уровни разнообразия бактерий.

Они заявили, что многие исследования причин возникновения кожных болезней были сосредоточены на поиске связей между конкретными типами микробов, обитающими на коже, и специфическими кожными заболеваниями (Wallen-Russell et al. 2017) .

Однако (sic!) на данный момент недостаточно доказательств того, что здоровая или нездоровая кожа определяется наличием специфических доминирующих типов микробиома (Findley et al. 2014) .

Например, рассмотрим акне.

На протяжении десятилетий изучалась роль Propionibacterium acnes в патогенезе болезни, но роль этой бактерии все еще неясна, но установлено, что этот микроорганизм является главным симбионтом нормальной флоры кожи, P. acnes использует липиды кожи для получения короткоцепочечных жирных кислот, которые могут аналогичным образом предотвратить микробиологические угрозы (Grice et al. 2011; Dessinioti et al. 2010) .

Возникает закономерный вопрос: к какой категории тогда следует относить P. Acnes?

Записывать ли ее во врага и кидать все силы на ее истребление?

Или сделать другом?

Стоит ли стремиться к балансу?

Способность кожи противостоять инфекциям и болезням является очень сложным многофакторным процессом.

Это комбинация большого количества систем, которые должны работать в синергизме (Grice et al. 2008; Cogen et al. 2009) . К ним относятся физический барьер, поверхностный рН хозяина и «активный синтез» генетически кодируемых молекул в его организме.

Неграмотно проводить различия между «полезными» и «вредными» микроорганизмами. Можно только опираться на способность самой кожи противостоять болезням и инфекциям, а не пытаться объяснять это «сложным внутренним миром» самих микробов, навешивая на них субъективные ярлыки «отрицательных» или «положительных» героев.

Кроме того, нельзя забывать о связи кожи с иммунной системой.

Микробы на коже могут влиять на поведение иммунных клеток. Недавние испытания показали, что Staphylococcus epidermidis помогает иммунной системе контролировать инфекции, изменяя функцию Т-клеток (ключевой компонент адаптивного иммунного ответа организма) для повышения иммунитета хозяина.

Исследования обнаружили, что различные микробы сообща влияют на составляющие иммунной системы, и то, как они общаются с иммунной системой, очень специфично для каждого микроба (Wallen-Russell et al. 2017) .

Многие из кожных микроорганизмов являются безвредными и в некоторых случаях обеспечивают жизненно важные функции, которые человеческий геном не развил. Симбиотические микроорганизмы занимают широкий спектр кожных ниш и защищают от вторжения более патогенных или вредных организмов. Эти микроорганизмы могут также влиять на миллиарды Т-клеток, которые с их помощью учатся противостоять патогенам.

И вся эта система должна находиться в тонком балансе не только между собой, но еще и «дружить» с организмом-хозяином.

Американцы показали, что разнообразие микробов – это гарантия стабильности и равновесия в организме (Wallen-Russell et al. 2017) .

Вывод: чем разнообразнее микробиом, тем лучше здоровье.

Главный вопрос: что делать?

Стоит ли однозначно полагаться на популярные мнения о том, что микробиотические продукты различной направленности – это средство Макропулоса?

Могут ли эти препараты нарушить спокойствие в микромире?

На первый взгляд, нет.

Но, вот, казалось бы, популярный и безобидный витамин B12, который многие пациенты принимают в качестве биологически активной добавки.

Недавно канадские врачи (Kang et al. 2015) выяснили, что биосинтез этого витамина в присутствии бактерий Propionibacterium acnes значительно снижался у пациентов с угревой болезнью. Они предположили, что человек, принимающий витамин B12, модулирует деятельность микробиоты кожи и способствует патогенезу акне.

Чтобы проверить эту гипотезу, канадцы проанализировали микробиоту кожи у здоровых людей, и дополнили ее витамином B12.

Они обнаружили, что добавка витамина подавляет экспрессию генов биосинтеза витамина B12 у P. acnes и изменяет транскриптомы микробиоты кожи.

В результате у одного из десяти испытуемых появилось акне через неделю после приема витамина.

Кроме того, проанализировав молекулярный механизм, ученые обнаружили, что добавка витамина B12 в культуры P. acnes способствовала производству порфиринов, которые, как уже известно, провоцируют воспалительный процесс.

Это новое свидетельство о роли внешнего провоцирующего фактора, подрывающего тонкий баланс.

А сколько еще предстоит выяснить?

Схожие вопросы возникают и в теме популярных, особенно в России, добавок с пре- и пробиотиками.

Напомним:

Пробиотики – живые микроорганизмы (или лиофилизированные споры), которые, при использовании в определенном количестве, как считается, положительно влияют на здоровье.

Пребиотики не содержат живых микроорганизмов, но стимулируют размножение «хорошей» микрофлоры за счет создания питательной среды.

Есть еще группа синбиотиков , продуктов, совмещающих пробиотики и пребиотики.

Идея использования пробиотиков для восстановления флоры кишечника постулируется очень давно (см., например, Rowland et al. 2009) , и проблема с внутренней средой организма заключается в том, что она недоступна и изолирована от внешней среды и ее сложно изучать и поэтому контролировать (Grönlund et al. 1999) .

С кожей все должно быть проще – она видна невооруженным глазом, ежедневно подвергается внешнему воздействию и не имеет проблемы доступа к микробиому.

Но опять появляется «но».

Американцы установили, что на кожу влияет окружающая среда, которая провоцирует проблемы, и поэтому бессмысленно использовать «пробиотические» средства, если в окружающей среде присутствует что-то, что сразу же нивелирует эффект (см. Wallen-Russell et al. 2017) .

Как только действие пробиотиков заканчивается, кожа сразу же возвращается в привычное состояние.

Кроме того, есть и сложности при производстве пробиотиков.

Мы обратились к эксперту – косметическому химику – и попросили ее рассказать, какие особенности бывают при использовании пробиотических продуктов и когда их уместно применять.

Для использования пробиотиков в косметике есть определенные сложности – бифидо-, ацидо- и лактобактерии не способны образовывать споры и легко разрушаются.

При выборе пробиотического препарата возникает несколько проблемных вопросов.

Первый – выживаемость, так как пробиотическими свойствами обладают только живые микробы. Более того, целым рядом работ было показано, что минимально достаточной дозой, способной осуществлять значимое действие, может считаться доза не менее 107 КОЕ (Saavedra 2001) .

Выживаемость бактерий зависит от технологии производства и условий хранения препарата. Например, добавление бифидобактерий в кефир не гарантирует их сохранности и способности к размножению; жизнеспособность микрофлоры как в жидких, так и в простых сухих формах препаратов может быть утрачена ранее официального срока. Для большинства пробиотиков, особенно для жидких лекарственных форм, требуются особые условия хранения, например, температура.

Следует учитывать разрушительное действие желудочного сока на незащищенную флору. Доказано, что лишь небольшое число штаммов лактобактерий (L. reuteri, L. plantarum NCIB8826, S. boulardii, L. acidophilus, L. casei Shirota) и бифидобактерий обладает кислотоустойчивостью. Большинство микробов погибает в желудке.

По данным Анатолия Безкоровайны (Bezkorovainy 2001) , лишь 20–40 % селективных штаммов выживает в желудке.

Д. Почарт (Pochart et al. 1992) продемонстрировал, что из 108 микр. тел лактобактерий, принятых в кислотоустойчивой капсуле, в кишечнике обнаруживается 107, после приема такого же количества в йогурте – 104 микр. тел, а после приема той же дозы в открытом виде (порошок) микробы в кишечнике не обнаруживаются вовсе. Поэтому предпочтительны пробиотики, заключенные в кислотоустойчивую капсулу.

Впрочем, после того как микробиологическое равновесие в кишечнике будет восстановлено, прием различных кисломолочных продуктов нужен и важен!

По данным публикаций, внутренний прием различных видов пробиотиков эффективен для решения ряда проблем кожи (табл. 2) .

Таблица 2. Штаммы пробиотиков, которые исследовались относительно положительного влияния при лечении различных видов заболеваний

Виды пробиотиков

штамм

ЖКТ

Экзема

Аллергии

Акне

Иммуномодуляция

Бактерии используют очень широко и в продуктах по уходу за кожей. В средствах для волос они работают как укрепляющие и стимулирующие рост. Также на их основе можно делать инновационные консерванты («мертвые бактерии (лизаты) – убивают живые бактерии»).

Вот примеры:

  • Aspergillus/Rice Ferment Extract – аспаргилус, плесневый гриб, который называют еще «плесень кодзи». Ценен тем, что может перерабатывать то, что не под силу Saccharomyces – ферментирует крахмал. Используется для производства саке (из рисового зерна), соевого соуса и мисо-пасты. Но самое обширное применение – это использование для получения лимонной кислоты. Для кожи используется как выравнивающий тон компонент, осветляющий пигментацию; также он эффективно отшелушивает кожу, запуская процесс омоложения.
  • Leuconostoc Ferment Filtrate – лейконосток, лактобактерия, которая вызывает квашение огурцов и капусты. Натуральная альтернатива консервантам и противомикробным добавкам. Эффективно подавляет все виды патогенных микроорганизмов.
  • Saccharomyces/Magnesium Ferment и Saccharomyces/Copper Ferment и Saccharomyces/Iron Ferment и Saccharomyces/Zinc Ferment – смесь дрожжевых «сахарных» грибов, которые росли в присутствии ионов магния, меди, железа и цинка. Необходимые для роста волос минералы, аминокислоты и витамины дрожжей делают комплекс универсальным для решения проблем волос.
  • Lactobacillus/Rye Flour Ferment Filtrate – лактобактерии, выросшие на ржаной муке. Регулируют работу иммунной системы кожи; уменьшают количество пропионовых бактерий, потому хорошо себя показывают при лечении проблемной кожи; увлажняют кожу и стимулируют ее заживление.
  • Bifida Ferment Lysate – лизат бифидобактерий. Оказывает противовоспалительное и заживляющее действие; применяется как антистрессовая добавка, уменьшающая чувствительность кожи; используется для anti-age препаратов, так как нормализует обменные процессы.

Выводы

Мы написали эту статью, чтобы показать, что все классификации и споры о полезных и вредных бактериях условны.

Когда в 2008 году Национальные институты здравоохранения США затеяли крупный проект Human Microbiome Project, подобный столь же масштабному проекту по расшифровке генома человека, ученые хотели удовлетворить исследовательский интерес.

Тогда амбициозная задача ученых – понять наконец, как изменения в микробиоме сказываются на здоровье человека, – так и не была решена, равно как и расшифровка генома человека не дала окончательных ответов на то, как функционируют гены.

Ответы еще предстоит получить, и можно предположить, что они не будут однозначными.

Однако академические идеи были выхвачены из контекста и из-под чутких рук ученых, вынесены за пределы лабораторий и стали достоянием широкой публики, породив множество мифов и неверных интерпретаций.

То, что мы наносим на кожу «хорошие» бактерии и надеемся с их помощью победить «вредные» или принимаем внутрь препараты и считаем, что они безобидны, может тем не менее колебать баланс микроорганизмов. Вот почему очень важно прислушиваться к своему врачу и использовать правильные продукты и ингредиенты и только тогда, когда это действительно необходимо.

Нет «плохих» или «хороших» бактерий, важен только баланс между ними. И его поддержание в наших руках.