Порядок работы с картой карно. Схемотехника

Другой способ получения простых импликант формул с малым числом переменных (и, значит, нахождения минимальной ДНФ) основан на использовании так называемых карт Карно.

Карта Карно - это специального вида таблица, которая позволяет упростить процесс поиска минимальных форм и успешно применяется, когда число переменных не превосходит шести. Карты Карно для функций, зависящих от n переменных, представляет собой прямоугольник, разделенный на 2 n клеток. Каждой клетке диаграммы ставится в соответствие двоичный n-мерный набор. Значения заданной функции f из вносятся в нужные квадраты, однако если клетке соответствует 0, то обычно она остается пустой.

В первой таблице показан пример разметки карты Карно для функции, зависящей от трех переменных. Нижние четыре клетки карты соответствуют двоичным наборам, в которых переменная x принимает значение 1, четыре верхние клетки соответствуют наборам, в которых переменная x принимает значение 0. Четырем клеткам составляющим правую половину карты, соответствуют наборы, в которых переменная y; принимает значение 1 и т.д. Во второй таблице приведена разметка карты Карно для n=4 переменных.

y
z
-
x
0
0
0
1
1
1
1
0
0 000 001 011 010
1 100 101 111 110

z
w
--
xy
0
0
0
1
1
1
1
0
00 0000 0001 0011 0010
01 0100 0101 0011 0010
11 1100 1101 1111 1110
10 1000 1001 1011 1010

Для построения минимальной ДНФ производится процедура склеивания "1". Склеивающимся значениям "1" соответствуют соседние клетки, т.е. клетки отличающиеся лишь значением одной переменной (на графическом изображении разделенных вертикальной или горизонтальной линией с учетом соседства противоположных крайних клеток).

Процесс склеивания "1" сводится к объединению в группы единичных клеток карты Карно, при этом необходимо выполнять следующие правила:

1. Количество клеток, входящих в одну группу, должно выражаться числом кратным 2, т.е. 2 m где m=0,1,2,...

2. Каждая клетка, входящая в группу из 2 m клеток, должна иметь m соседних в группе.

3. Каждая клетка должна входить хотя бы в одну группу.

4. В каждую группу должно входить максимальное число клеток, т.е. ни одна группа не должна содержаться в другой группе.

5. Число групп должно быть минимальным.

Считывание функции f по группе склеивания производится следующим образом: переменные, которые сохраняют одинаковые значения в клетках группы склеивания, входят в конъюнкцию, причем значениям 1 соответствуют сами переменные, а значениям 0 их отрицания.

Приведем шаблоны, которые помогают строить покрытия 1 (переменные считаем теми же, но их писать не будем). Для упрощения записи мы не будем отмечать переменные, хотя сохраним их обозначения как и в вышеприведенных таблицах.












F=y&z&w
1
1

1

Сначала смотрим, есть ли покрытия_1 из 16 клеток покрывающих хотя бы одну непокрытую 1. Таких покрытий нет. Переходим к покрытиям из 8 клеток. Смотрим, есть ли покрытия 1 из 8 клеток покрывающих хотя бы одну непокрытую 1. Таких покрытий нет. Переходим к покрытиям из 4 клеток. Смотрим, есть ли покрытия 1 из 4 клеток покрывающих хотя бы одну непокрытую 1. Таких покрытий два. Переходим к покрытиям из 2 клеток. Такое покрытие одно. Таким образом, все 1 стали покрытыми. Далее, смотрим можно ли убрать некоторые покрытия, так чтобы все единицы остались покрытыми. В конце выписываем МДНФ: f=¬X¬ZvYWv¬YZ¬W.

Замечание. Для построения минимальной КНФ функции f, достаточно построить минимальную ДНФ для функции ¬f , а затем использовать f=¬¬f и законы де Моргана.

) по так называемым картам Карно.

Карты Карно — это другое графическое представление таблиц истинности. Структура таких карт для функции двух, трех и четырех переменных имеет вид:

Каждая клетка такой таблицы содержит значение логической функции x при фиксированном значении всех ее аргументов a 3 , a 2 , a 1 , a 0 т.е. Изображает одну из строчек таблицы истинности. Соответствующий аргумент считается истинным для данной клетки, если эта клетка входит в строки или столбцы, помеченные сбоку или снизу символом этого аргумента, в противном случае аргумент для данной клетки считается ложным. Сокращенную ДНФ записывают по прямоугольным группам смежных клеток карты содержащих единицу. Допустимое число клеток в группе равно 2 n , n=1,2,3,…

Правило записи сокращенной ДНФ аналогичны правилам записи ДСНФ и отличаются только тем, что в элементарных произведениях не указываются те аргументы, которые истинны лишь для половины клеток соответствующей группы.

Запишем, для примера, ДНФ в последующей карте Карно:

Сокращенная ДНФ для данного случая имеет вид:

При выделении прямоугольных групп клеток следует иметь в виду, что:

1. выделение групп часто неоднозначно, а, следовательно, неоднозначно и решение задачи синтеза;

2. группы должны быть как можно больше, а число групп как можно меньше;

3. группы могут пересекаться, т.е. иметь общие клетки

4. с точки зрения формирования прямоугольных групп, карты трех и четырех переменных следует считать трехмерными. Карму функции с тремя переменными следует рассматривать как цилиндр со склеенными правым и левым краями. Поэтому на плоском рисунке карты прямоугольные группы смежных клеток могут оказаться разорванными. Например:

В прямоугольной группе смежных клеток на нашем рисунке сокращенной ДНФ соответствует слагаемое.

Карту функций с четырьмя аргументами следует рассматривать как поверхность тора. Поэтому здесь следует считать склеенными не только правый и левый, но и верхний и нижний края карты. В этих условиях на карте функции четырех переменных тоже могут оказаться разорванные группы смежных клеток. Примеры таких разрывов иллюстрируют рисунки:

По карте Карно можно записать также и сокращенную КНФ . Она записывается по прямоугольным группам смежных клеток содержащих нули. Прямоугольные группы выделяются также как и при записи ДНФ . Правило записи сокращенной КНФ аналогичны правилам записи КСНФ и отличаются только тем, что в элементарных суммах не учитываются те аргументы, которые истинны лишь для половины клеток соответствующей группы.

Метод карт Карно широко используется в инженерной практике при решении задач с числом аргументов не более четырех.

Карты Карио представляют собой специально организованные таблицы соответствия, на которых удобно осуществляются операции склеивания при упрощении функции на пути к минимальным формам. Столбчы и строки таблицы соответствуют всевозможным наборам значений переменных, причем эти наборы расположены в таком порядке, что каждый последующий отличается от предыдущего только одной из переменных. Благодаря этому соседнне ячейки по горизонтали и вертикали отличаются значением только одной переменной. Ячейки, расположенные по краям таблицы, также считаются соседними и обладают этим свойством. На рис. 2.1 показаны карты Карно для двух, трех и четырех переменных.

Каждому набору значений переменных по строкам и столбцам соответствует своя ячейка, расположенная на их пересечении. Она заполняется единицей, если на соответствующем наборе функция принимает единичное значение, или нулем при нулевом значении функции (нули обычно не вписываются, а оставляются пустые клетки). Таким образом, отмеченные ячейки соответствуют ыицтермам, а неотмеченные - макстермам канонических форм. Например, на рис. 2.2,а показана карта Карно для функцин, заданной таблицей соответствия из рассмотренного в § 2.7 примере.

Операции склеивания двух минтермов ранга исходной формулы соответствует на карте Карно объединение двух соседних ячеек, отмеченных единицами, и эта объединенная пара ячеек представляет собой результирующий минтерм ранга. Аналогично склеивание двух минтермов ранга в минтерм ранга представляется объединением соответствующих пар ячеек в прямоугольную группу из четырех соседних ячеек и т. д. Полное число ичеек в любой группе всегда выражается целой степенью двойки , где а и b - соответственно целые числа пар ячеек по горизонтали и вертикали, причем каждая такая группа отображает минтерм ранга и покрывает минтермов ранга исходной канонической формы. Так, на рис. показано сокращенное покрытие, импликанты которого образованы в результате склеивания минтермов функции, изображенной на рис. 2.2,а. На рис. показаны тупиковые покрытия рассматриваемой функции, причем покрытие на рис. 2.2,в является минимальным.

Считывание минтермов с карты Карно осуществляется последовательным рассмотрением групп ячеек. В минтерм входят только те переменные, которые сохраняют свои значения в данной группе, причем значениям 1 соответствует сама переменная, а значению 0 - ее отрицание. Переменные, которые принимают в данной группе различные значения (0 и 1), являются свободными и в данном минтерме отсутствуют. Примеры считывания минтермов с карт Карно для различного числа переменных показаны на рис. 2.3.

Любая совокупность групп ячеек, покрывающая все отмеченные ячейки, соответствует некоторой сумме минтермов различных рангов, которая равнозначна данной функции. Стремление к простейшей форме интуитивно понимается как поиск такого минимального покрытия, число групп в котором было бы поменьше, а сами группы были покрупнее. Действительно, чем меньше групп в покрытии, тем меньше минтермов в формуле, а при увеличении размеров группы соответственно понижается ранг минтерма, а значит, уменьшается количество содержащихся в нем переменных.

Практически для отыскания минимальною покрытия на карте Карно прежде всего выбирается отмеченная ячейка, входящая в такую наибольшую группу, которая покрывает любые другие возможные группы с этой ячейкой. После формирования этой наибольшей группы по тому же признаку выбираетси другая не покрытая ячейка и формируется ее наибольшая группа. Эгот процесс продолжается до тех пор, пока все отмеченные ячейки окажутся в тех или иных группах либо останутся только такие непокрытые ячейки, которые можно сгруппировать различными способами. Из возможных вариантов выбираются те, которые приводят к минимальным покрытиям.

Наглядность карт Карно позволяет решать задачи минимизации, не прибегая к промежуточным покрытиям - сокращенным и тупиковым формам, существенно упрощает этот процесс. К сожалению, возможности этого метода ограничиваются по существу функциями четырех переменных. При большем числе переменных приходится прибегать к различным ухищрениям и основное преимущество - наглядность теряется. Тем не менее этот метод еще используется в инженерной практике для пяти, шести, а иногда и большего числа переменных, что требует увеличения количества карт Карно. Так, при пяти переменных используются две карты, одна которых соответствует инверсии пятой - переменной, а другая - этой же переменной без инверсии, причем они размечаются либо одинаково и сравниваются наложением (рис. 2.4,а), либо симметрично и сравниваются ошосительно оси симметрии (рис. ). Для упрощения разметки строки и столбцы, соответствующие значениям 1 для иекоюрой переменной, выделяются фигурной скобкой. Теперь смежными считаются и такие ячейки, которые занимают на картах одинаковые или симметричные области (в зависимости от способа разметки).

В качестве примера на рис. 2.4 показана функция, заданная таблицей соответствия:

Сначала строятся простейшие покрытия на каждой карте раздельно, с которых списываются две функции: для левой карты и для правой карты .

Затем ищутся такие импликанты в этих функциях, которые различаются только вхождением и их можно объгдннить. В данном случае это (соответствующие им группы ячеек, обведенные жирной линией на рис. 2.4, а, совпадают при наложении, а на рис. 2.4, б они расположены симметрично), в результате объединения которых получается иыпликанта . Наконец, можно также дополнять одну из карт несущественными нмпликантами, которые можно считать соседними имплшеантам другой карты и, объединяя их между собой, упрощать результирующее выражение. Так, в левую карту можно добавить импликанту (на рис. 2.4 она показана пунктиром), которая, объединяясь с имплнкантой правой карты , дает . Окончательное выражение получаем как сумму с учетом выполненных преобразований:

Для функций шести переменных потребовалось бы четыре карты Карно, а с каждой новой переменной количество требуемых карт увеличивается вдвое и, например, для восьми переменных уже равно 16. В практике используются и другие графические структуры, например, карты Вейча, которые отличаются только способом разметки переменных. Ясно, что графические методы пригодны для минимизации вручную сравнительно простых функций.

В то же время машинные методы анализа и проектирования логических схем основаны на формальном алгоритме Квайиа-Мак-Класки и его разновидностях.

Для получения минимальной формы инверсии функции необходимо найти на карте Карно минимальное покрытие совокупности нулевых ячеек и описать соответствующую формулу по указанному выше правилу. Так, для функции на рис. имеются два таких покрытия (рис. 2.5), отличающихся только одной импликантой. Если требуется найти минимальную форму как произведения макстермов, то в соответствии с изложенным в § 2.4 правилом достаточно в выражении для инверсной функции заменить все логические операции на дуальные, а вхождения переменных - на инверсные: . Эти же формы можно записать на основе принципа дуальности непосредственно по минимальным покрытиям нулевых ячеек карты Карно. Для этого достаточно каждую группу ячеек идентифицировать как сумму переменных при инверсной разметке карты Карно, т. е. считая отмеченные значения переменных нулевыми.

Лекция №11

Упрощение логических выражений методом карт Карно

1. Куб Карно.

2. Принцип минимизации.

3. Порядок работы с картой Карно.

Куб Карно

Куб Карно́ - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом

Принцип минимизации

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ, является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Аналогично для КНФ:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ, могут иметь в своём составе 2 N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N –мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Таблица не верна. Верной будет: 1 1 0 0 1 1 0 0. Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2 K термов, принадлежащие одной K –мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом, появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями пяти, семи (обязательно простое число) и т.д., используя не визуализируемые многомерные булевы кубы.

Порядок работы с картой Карно

Исходной информацией для работы с картой Карно является таблица истинности минимизируемой функции. Таблица истинности содержит полную информацию о логической функции, задавая её значения на всех возможных 2 N наборах входных переменных X 1 ... X N . Карта Карно также содержит 2 N клеток, каждая из которых ассоциируется с уникальным набором входных переменных X 1 ... X N . Таким образом, между таблицей истинности и картой Карно имеется взаимно однозначное соответствие, и карту Карно можно считать соответствующим образом отформатированной таблицей истинности.

В данном разделе в качестве примера используется функция четырёх переменных, заданная таблицей истинности, изображённой на рис. 2а. Карта Карно для той же функции изображена на рис. 2б.

Рис. 2. Пример работы с картой Карно

Принципы склейки

· Склейку клеток карты Карно можно осуществлять по единицам (если необходимо получить ДНФ) или по нулям (если требуется КНФ).

· Склеивать можно только прямоугольные области с числом единиц (нулей) 2 n , где n - целое число. Для карт Карно с числом переменных более четырёх могут получаться более сложные области, о чём будет сказано в следующих разделах.

· Область, которая подвергается склейке должна содержать только единицы (нули).

· Крайние клетки каждой горизонтали и каждой вертикали также граничат между собой (топологически карта Карно для четырёх переменных представляет собой тор) и могут объединяться в прямоугольники. Следствием этого правила является смежность всех четырёх угловых ячеек карты Карно для N =4. Если во всех четырёх угловых ячейках стоят единицы (нули) они могут быть объединены в квадрат, как показано на рис. 2в.

· Все единицы (нули) должны попасть в какую-либо область.

· С точки зрения минимальности ДНФ (КНФ) число областей должно быть как можно меньше (каждая область представляет собой терм), а число клеток в области должно быть как можно больше (чем больше клеток в области, тем меньше переменных содержит терм. Терм размером 2 n ячеек содержит N n переменных).

· Одна ячейка карты Карно может входить сразу в несколько областей. Это следует из очевидного свойства булевых функций: повторение уже существующего слагаемого (сомножителя) не влияет на функцию:

· В отличие от СДНФ (СКНФ), ДНФ (КНФ) не единственны. Возможно несколько эквивалентных друг другу ДНФ (КНФ), которые соответствуют разным способам покрытия карты Карно прямоугольными областями.

Описание

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути, Карта Карно - это таблица истинности, составленная в 2-х мерном виде . Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.е. вся Карта Карно сворачивается в фигуру тор (бублик) (рис.4.1).

Рис. 4.1. Метод скручивания карты Карно

На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки, которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

1. Объединяем смежные клетки, содержащие единицы, в область так, чтобы одна область содержала ( целое число = 0… ) клеток (помним про то, что крайние строки и столбцы являются соседними между собой), в области не должно находиться клеток, содержащих нули;

2. Область должна располагаться симметрично оси (ей) (оси располагаются через каждые четыре клетки);

3. Несмежные области, расположенные симметрично оси(ей), могут объединяться в одну;

4. Область должна быть как можно больше, а количество областей как можно меньше;

5. Области могут пересекаться;

6. Возможно несколько вариантов покрытия.

Далее берём первую область и смотрим, какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных; если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое, что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например (для Карт на 2 переменные):

Для КНФ всё то же самое, только рассматриваем клетки с нулями, неменяющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ:

Так же из ДНФ в КНФ и обратно можно перейти использовав Законы де Моргана.

Примеры:

Пример 1.

Упростить полученную СДНФ, используя склеивание, а так же применить карту Карно для получения ДНФ.

Применено свойство и склеивание по «z» и по «y».

Дизъюнкции в скобках получены по парам наборов переменных (0,0,0), (0,0,1) и (0,0,0), (0,1,0). Наборы в каждой паре отличаются только в одной позиции и называются соседними. После упрощения остаются совпадающие в паре переменные. Карты Карно представляют собой таблицу истинности, в которой соседние наборы переменных расположены рядом (метод скользящей единицы при этом нарушается).

Для нашей функции имеем

yz x

Карты Карно позволяют получить ДНФ минимальную по числу переменных или их отрицаний. Для этого необходимо заключить в круги рядом стоящие значения функции равные 1, причём

1) Каждый руг может содержать только 2 K (к = 0, 1, 2,…) единиц, например16, 8, 4, 2, 1.

2) Круги должны быть наибольшего размера.

3) Число кругов наименьшее, покрывающее все единицы.

4) Так как наборы (0,0) и (1,0) соседние. То края карты соединяются друг с другом.

5) По каждому из кругов составляется простая конъюнкция, входящая в ДНФ. При этом оставляются только те переменные, которые сохраняют свое значение во всем круге и как обычно, если х i = 1, то пишем х i , если х i = 0, то .

Построим круги для нашего примера.

yz x
1 1 1 2

Имеем две конъюнкции. Для первого круга и сохраняют свое значение, получаем . Во втором круге не меняется и , получаем . Окончательно .

Пример 2

У мальчика Коли есть мама, папа, дедушка и бабушка. Коля пойдёт гулять на улицу, если ему разрешат хотя бы двое родственников.
Для краткости обозначим родственников Коли через буквы:
мама - х1
папа - х2
дедушка - х3
бабушка - х4
Условимся обозначать согласие родственников единицей, несогласие - нулём. Возможность пойти погулять обозначим буквой f, Коля идёт гулять - f = 1, Коля гулять не идёт - f = 0.
Составим таблицу истинности:

Перерисуем таблицу истинности в 2-х мерный вид:

Переставим в ней строки и столбцы в соответствии с кодом Грея. Получили Карту Карно:

Заполним её значениями из таблицы истинности:

Минимизируем в соответствии с правилами:

1. 1. Все области содержат 2^n клеток;

2. 2. Так как Карта Карно на четыре переменные, оси располагаются на границах Карты и их не видно (подробнее смотри пример Карты на 5 переменных);

3. 3. Так как Карта Карно на четыре переменные, все области симметрично осей - смежные между собой (подробнее смотри пример Карты на 5 переменных);

4. 4. Области S3, S4, S5, S6 максимально большие;

5. 5. Все области пересекаются (необязательное условие);

6. 6. В данном случае рациональный вариант только один.

Теперь по полученной минимальной ДНФ можно построить логическую схему:

Из-за отсутствия в наличии шести - входового элемента ИЛИ, реализующего функцию дизъюнкции, пришлось каскадировать пяти- и двух-входовые элементы (D7, D8).

Составим мин. КНФ:

Заключение .

Для минимизации логических функций возможно использовать разные методы:

  • карта Карно (Вейча)
  • Квайна
  • Квайна- Мак-Класки
  • Петрика

Отличие метода карт Карно от карт Вейча заключается в способе обозначения строк и столбцов карт. У карт Карно строки и столбцы обозначаются с помощью кода Грея. Однако, принципиальной разницы между ними нет.

Метод минимизационных карт Карно (или карт Вейча) хорошо работает при числе аргументов 3,4 и даже 5 и обеспечивает простоту получения результата. Этот метод основан на зрительном анализе таблиц (карт) и не может быть применен для обработки вычислительной техникой.

Домашнее задание:

1. Минимизировать нижеприведённые функции, представленные картами Карно.

Не заполненные клетки соответствуют нулю. Переменные, обозначенные буквами, соответствуют прямому значению, а не обозначенные - инверсному.

Контрольные вопросы:

1. Определение куба Карно.

2. Кем и в каком году были изобретены карты Карно?

3. Основной метод минимизации логических функций?

Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

Инструкция . При вводе с клавиатуры используйте следующие обозначения:

Логическое выражение :

Вывод промежуточных таблиц для таблицы истинности
Построение СКНФ
Построение СДНФ
Построение полинома Жегалкина
Построение карты Вейча-Карно
Минимизация булевой функции
Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис .

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:
По алгебраической форме можно построить схему логического устройства, используя логические элементы.


Рисунок1- Схема логического устройства

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Операция НЕ - логическое отрицание (инверсия)

Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
  • если исходное выражение истинно, то результат его отрицания будет ложным;
  • если исходное выражение ложно, то результат его отрицания будет истинным.
Для операции отрицания НЕ приняты следующие условные обозначения:
не А, Ā, not A, ¬А, !A
Результат операции отрицания НЕ определяется следующей таблицей истинности:
A не А
0 1
1 0

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
Применяемые обозначения: А или В, А V В, A or B, A||B.
Результат операции ИЛИ определяется следующей таблицей истинности:
Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

Операция И - логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
Применяемые обозначения: А и В, А Λ В, A & B, A and B.
Результат операции И определяется следующей таблицей истинности:
A B А и B
0 0 0
0 1 0
1 0 0
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Операция «ЕСЛИ-ТО» - логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
Применяемые обозначения:
если А, то В; А влечет В; if A then В; А→ В.
Таблица истинности:
A B А → B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А ↔ В, А ~ В.
Таблица истинности:
A B А↔B
0 0 1
0 1 0
1 0 0
1 1 1

Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

Применяемое обозначение: А XOR В, А ⊕ В.
Таблица истинности:
A B А⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приоритет логических операций

  • Действия в скобках
  • Инверсия
  • Конъюнкция (&)
  • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
  • Импликация (→)
  • Эквивалентность (↔)

Совершенная дизъюнктивная нормальная форма

Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
  1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все логические слагаемые формулы различны.
  3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
  4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

Совершенная конъюнктивная нормальная форма

Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
  1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все элементарные дизъюнкции различны.
  3. Каждая элементарная дизъюнкция содержит переменную один раз.
  4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.