Способ изготовления микросхем. Производство интегральных микросхем

Процесс изготовления современных полупроводникоых ИС весьма сложен. Он проводится только в специальных помещениях с микроклимитом на прецезионном оборудовании. В настоящее время для создания полупроводниковых ИС на биполярных транзисторах используется несколько разновидностей технологических процессов, отличающихся главным образом способами создания изоляции между отдельными элементами . Основные технологические операции изготовления полупроводниковых микросхем можно разделить на шесть этапов.

1. Подготовка слитков к резке на пластины. Первоначально выращивают слиток кремния, затем этот слиток готовят к резке на пластины - отрезают затравочную и хвостовую часть, а также удаляют части слитка с электрофизическими параметрами, не соответствующими установленным нормам или с недопустимыми требованиями. Калибровка выполняется шлифовкой по образующей поверхности слитка (круглое шлифование) шлифовальным кругом. После калибровки торцы слитка подшлифовывают так, чтобы они были строго перпендикулярны геометрической оси слитка, а для удаления механически нарушенного слоя и загрязнений слиток травят. Контроль кристаллографической ориентации торца слитка и базового среза выполняется рентгеновским или оптическим методами. Базовый и дополнительные срезы получают сошлифовыванием слитка по образующей алмазным кругом на плоско-шлифовальном станке. Для получения срезов слиток соответствующим образом закрепляют в специальном зажиме. После базового среза слиток разворачивают в зажиме, закрепляют и сошлифовывают вспомогательный срез. После шлифования срезов слиток травят.

2. Резка слитков на пластины. Резка слитка является важной операцией в маршруте изготовления пластин, она обуславливает ориентацию поверхности, толщину, плоскостность и параллельность сторон, а также прогиб.

Основным методом резки кремниевых слитков на пластины является резка диском с внутренней режущей алмазосодержащей кромкой. Отрезаемые пластины в зависимости от устройства станков переносятся вакуумным съемником или остаются на оправке. Пластины после резки подвергаются очистке от клеющих, смазочных материалов, частиц пыли.

Преимущества резки диском с внутренней режущей кромкой: высокая скорость резания (до 40 мм/мин); хорошее качество обработки поверхности (8-ой класс шероховатости); малый разброс по толщине пластин (±20 мкм); небольшие отходы материала.

Недостатки резки диском с внутренней режущей кромкой: сложность установки алмазного диска, его натяжения и центровки, зависимость качества и точности обработки от точности и качества инструмента.

Этот метод в сравнении с другими методами обеспечивает лучшее качество пластин и большую производительность процесса.

3.Шлифование пластин кремния. Под шлифованием понимают процесс обработки поверхностей заготовок на твердых дисках - шлифовальниках из чугуна, стали, латуни, стекла и других материалов с помощью инструментов - шлифовальников и абразивной суспензии (обработка свободным абразивом) или с помощью алмазных шлифовальных кругов (обработка связанным абразивом).

Процесс двустороннего шлифования свободным образивом выполняется на специальных станках. Перед шлифованием пластины сортируют по толщине. Контролируют неплоскостность рабочей поверхности шлифовальников, в случае необходимости выполняют правку - подшлифовку с кольцевыми притирами. Затем шлифовальники очищают от пыли и других загрязнений, промывают водой смазывают глицерином. На поверхность нижнего шлифовальника устанавливают зубчатые кольца сепараторы, которые должны иметь специальные допуски по толщине, а толщина должна быть несколько меньше требуемой после шлифования толщины пластин. Обрабатываемые поверхности укладывают в отверстия сепараторов.

При вращении верхний шлифовальник свободно устанавливается на поверхности пластин. Движение шлифовальника через цевочные колеса передается сепараторам. Пластины, увлекаемые сепараторами совершают сложные перемещения между шлифовальниками, чем достигается равномерность их обработки и износа шлифовальников.

Для двустороннего шлифования применяют водные и глицериновые суспензии микропорошков карбида кремния зеленого или электрокорунда белого с зернистостью от М14 до М5.

Этот метод более производителен, обеспечивает высокую точность обработки поверхности, не требует наклейки пластины.

4.Снятие фаски. Фаски с боковых поверхностей пластин можно снимать абразивной обработкой либо химическим травлением собранных в специальной кассете заготовок. Наиболее часто фаски снимают методом шлифовки профильным алмазным кругом на специальном станке.

5.Полирование пластин. Полировка обеспечивает минимизацию микронеровностей поверхности пластин и наименьшую толщину нарушенного слоя.Её производят на мягких доводочных полировальниках (круги обтянутые замшей, фетром, батистом, велюром) с помощью использования алмазной пасты, суспензии.

Полирование выполняют в несколько этапов, постепенно уменьшая размер зерна и твердость абразива, а на последнем этапе полностью исключают абразивное воздействие на обрабатываемый материал. Последний этап безабразивного воздействия позволяет полностью удалить механически нарушенный слой с поверхности пластины.

Существует несколько методов полирования:

· Механическое (предварительное и промежуточное) полирование. Его выполняют алмазными суспензиями и пастами с размером зерна от 3 до 1 мкм. Механическое полирование по своей сущности не отличается от шлифования, отличие состоит лишь в применяемых абразивных материалах, их зернистости, материале полировальника и режиме обработки. При использовании для полирования алмазных суспензий и паст на поверхности пластин образуется тонкая сеть рисок (“алмазный фон”), возникающих под действием острых режущих граней алмазных зерен. С целью удаления “алмазного фона” и уменьшения шороховатости поверхности иногда выполняют механическое полирование более мягкими абразивными материалами.

· Тонкое механическое полирование выполняется мягкими полировальными составами на основе оксидов алюминия, кремния, хрома, циркония и других размером зерна менее 1 мкм с помощью полировальников из ворсовых материалов, в которых могут утопиться субмикронные зерна порошка. Это уменьшает рабочую поверхность зерен и улучшает качество обработки поверхности пластин.

· Химико-механическое полирование. Оно отличается тем, что кроме обычного абразивного воздействия поверхность подвергается химическому воздействию. Полирующие составы - суспензии, золи, гели из субмикронных порошков оксидов кремния (аэросил), циркония, алюминия - приготавливаются на основе щелочи.

Выберем механическое полирование, которое будет выполняться алмазной суспензией из порошка АСМ3, односторонняя, частота вращения полировальника не более 30…40 об/мин. При переходе на порошок АСМ1 частоту вращения полировальника снижаем, нагрузку на пластину увеличиваем. После полировки пластину надо тщательно промыть в мыльных растворах.

6.Физическая очистка. Для последующих операций очень важна чистота поверхности. Поэтому перед началом, а также неоднократно в течение технологического цикла производят очистку , удаляя посторонние вещества с помощью промывки, растворения и т.п. Процессы очистки пластин и подложек предназначены для удаления загрязнений до уровня, соответствующего технологически чистой поверхности. Наиболее важна очистка поверхности после механической обработки, перед термическими процессами, перед нанесением различного рода покрытий, плёнок, слоёв. При очистке в первую очередь необходимо удалить молекулярные органические и химически связанные с поверхностью загрязнения, а затем - остаточные ионные и атомарные. При физической жидкостной очистке происходит десорбция адсорбированных поверхностью загрязнений без изменения их состава, т.е. без химических реакций, путем простого растворения. Поскольку возможно обратное загрязнение поверхности из очищаемой жидкости, необходимо следовать принципу ее непрерывного обновления (освежения).

Обезжиривание (отмывка) в органических растворителях (толуоле, четыреххлористом углероде, дихлорэтане, спиртах: этиловом, метиловом, изопропиловом и др.) применяется для удаления с поверхности пластин (подложек) жиров животного и растительного происхождения, минеральных масел, смазок, воска, парафина и других органических и механических соединений.

Обезжиривание погружением выполняют в специальных герметичных установках с двумя-четырьмя сваренными в единый блок ваннами с повышающимся уровнем жидкости. Контролируемыми параметрами процесса обезжиривания для данного количества пластин и данной порции конкретного растворителя и время обработки.

Обезжиривание в парах растворителя применяют для удаления малорастворимых с высокой температурой плавления загрязнений. Для обработки в парах применяют изопропиловый спирт, фреоны, хлорированные углеводороды. Недостатки данного метода: необходимость предварительной очистки растворителей; необходимость создания герметичных рабочих камер установок; большие расходы растворителя.

Ультразвуковое обезжиривание выполняют в специальных ваннах, дно и стенки которых совершают колебания с ультразвуковой частотой. Данный метод обеспечивает гораздо большую производительность, и улучшают качество не только обезжиривания, но и других операций жидкостной обработки.

7.Отмывка водой применяется для очистки полярных растворителей после обезжиривания, от остатков травителей, флюсов, кислот, щелочей, солей и других соединений. Также как и в органических растворителях, отмывка в воде сопровождается растворением загрязнений или механическим смыванием пылинок ворсинок и других частиц. Отмывку выполняют в подогретой до 50 … 60 °С деионизованной воде.

8. Химическая очистка. Этот вид обработки предусматривает разрушение загрязнений или поверхностного слоя очищаемого обьекта в результате химических реакций.

Хорошие результаты обеспечивает очитка кремния в растворе” Каро” . Именно этот метод будет использован в данном курсовом проекте - очистку смесью Каро с последующей более “мягкой”

очисткой в перекисно-аммиачном растворе. Классический состав смеси Каро для химической очистки поверхности кремния и оксида кремния, объёмное соотношение компонент находится в пределах

H 2 SO 4: H 2 O 2 = 3:1

Химическая очистка в этой смеси проводится при Т = 90 -150 о С. Смесь Каро позволяет очистить поверхность полупроводниковой пластины от органических загрязнений и, частично, от ионных и атомарных примесей. Кислота Каро устойчива в кислых средах и является очень сильным окислителем. Эта смесь способна очистить поверхность кремниевой пластины и от неметаллических загрязнений.

9.Эпитаксия. Эпитаксия - процесс наращивания монокристаллических слоев на монокристаллических подложках. Монокристаллические подложки в процессе эпитаксиального наращивания выполняют ориентирующую роль заставки, на которой происходит кристаллизация. Основная особенность - слои и локальные области противоположного типа проводимости или с отличной от полупроводниковой пластины концентрацией примеси представляют собой новые образования над исходной поверхностью. В процессе роста эпитаксиальные слои легируют, т.е. в них вводят донорные или акцепторные примеси. Особенностью также является то, что появляется возможность получения высокоомных слоев полупроводника на низкоомных пластинах.

При жидкофазовой эпитаксии атомы растущего слоя оседают на подложку из расплава или раствора, из которого необходимо вырастить соответствыущий слой. Второй вид эпитаксии - из парогазовой фазы - который и будет использоваться в данной технологии, основан на взаимодействии газа с пластиной. Здесь важными параметрами процесса является температуры газового потока и пластины. Можно использовать тетрахлорид кремния SiCl 4 либо силан SiH 4 .

Хлоридный метод основан на использовании химического взаимодействия паров тетрахлорида кремния с чистым водородом при Т =1200 о С:

SiCl 4 (газ) + 2H 2 (газ) = Si(тв) + 4HCl(газ)

Скорость роста эпитаксиального слоя может быть ограничена либо процессами массопереноса, т.е. количеством подводимых к поверхности подложек молекул реагентов или отводимых диффузией от подложки продуктов химических реакций, либо скоростями химических реакций. Основной недостаток - высокие температуры процесса, приводящие к диффузии примесей из пластин в растущий слой, а также автолегированию. Кроме того, обратимость реакции восстановления тетрахлорида требует высокой точности поддержания режима осаждения слоя.

Силановый метод основан на использовании необратимой реакции

термического разложения силана:

SiH 4 ------------->Siv+2H 2 ^

Установка для выращивания слоев эпитаксиальных слоев силановым методом близка по устройству к установке, используемой в хлоридном методе, и для предосторожности при работе с моносиланом она снабжается системой для откачки воздуха и следов влаги. Совершенные монокристаллические слои получаются при температурах разложения моносилана 1000 … 1050 °С, что на 200 … 150°С ниже чем при восстановлении тетрахлорида кремния. Это уменьшает нежелательную диффузию и автолегирование, что позволяет изготовить эпитаксиальные структуры с более резкими границами переходов. Скорость роста слоев выше чем при восстановлении тетрахлорида кремния.

Недостаток этого метода - самовоспламеняемость и взрывоопасность моносилана, требующие специальных мер предосторожности. Токсичность силана.

В данном курсовом проекте будем использовать SiCl 4 . т.к. с этим газом удаётся выращивать монокристаллические слои кремния, сохраняющие кристаллическую ориентацию кремниевой подложки без поверхностных нарушений.

Процесс эпитаксиального наращивания будет происходить в эпитаксиальном реакторе.

10.Оксидирование. Оксидирование можно проводить несколькими способами, такими как анодное оксидирование, катодное напыление оксидного слоя, либо термическое оксидирование кремния. Термическое оксидирование, как и другие высокотемпературные процессы предъявляют жесткие требования к кремниевым исходным слиткам (нежелательно содержание в них кислорода и углерода), к качеству процессов изготовления и очистки пластин. Оксидирование кремния сопровождается: диффузией кислорода под слой диоксида кремния; обогащением поверхностного слоя толщиной 1…2 мкм кислородом выше предела растворимости за счет напряженного состояния решетки кремния; взаимодействием кислорода с дефектами исходной пластины и генерацией дополнительных дислокаций и дефектов упаковки. На дефектах быстро скапливаются примеси диффундирующих металлов натрия, меди, железа и др. Поскольку именно в этом тонком слое формируются элементы ИМС, все это приводит к деградации их электрических параметров. Концентрацию кислорода в при поверхностном слое кремния снижают при отжиге пластин кремния в атмосфере азота при 1000 … 1100 °С. Поиск путей совершенствования процесса термического оксидирования привел к появлению модификаций метода термического оксидирования кремния.

Нанесение плёнок SiO на пластины кремния термическим окислением кремния при атмосферном давлении в горизонтальных цилиндрических кварцевых реакторах - наиболее распространённый метод. Температура окисления лежит в интервале 800…1200 о С и поддерживается с точностью ± 1 о С для обеспечения однородности толщины плёнок. Будем производить комбинированное окисление как в сухом кислороде, т.к. в этом случае плёнки SiO 2 получаются высокого качества, несмотря на то, что скорость окисления в этих условиях мала, так и во влажном кислороде (происходит всё с точностью до наоборот).

Основные реакции:

1. сухое оксидирование в атмосфере чистого кислорода:

Si(тв) > SiO 2 (тв)

2. влажное оксидирование в смеси кислорода с водяным паром:

Si(тв) + 2H 2 O > SiO 2 (тв) + H 2

Скорость оксидирования определяется самым медленным этапом диффузионного проникновения окислителя сквозь растущую пленку к границе раздела SiO 2 >Si. Коэффициенты диффузии сильно зависят от температуры. При низких температурах коэффициенты диффузии, а следовательно, скорость роста пленки малы. Повысить скорость роста можно либо увеличением давления в реакционной камере установки, либо повышением температуры процесса.

11.Фотолитография. Суть процесса фотолитографии состоит в следующем. Чувствительные к свету фоторезисты наносятся на поверхность подложки и подвергаются воздействию излучения(экспонированию). Использование специальной стеклянной маски с прозрачными и непрозрачными полями (фотошаблона) приводит к локальному воздействию на фоторезист и, следовательно, к локальному изменению его свойств. При последующем воздействии определенных химикатов происходит удаление с подложки отдельных участков пленки фоторезиста, освещенных и неосвещенных в зависимости от типа фоторезиста (проявления). Таким образом, из пленки фоторезиста создается защитная маска с рисунком, повторяющим рисунок фотошаблона.

В зависимости от механизма фотохимических процессов, протекающим под действием излучения, растворимость экспонированных участков может либо возрастать, либо падать. Соответственно, при этом фоторезисты является либо позитивными, либо негативными. Пленка позитивного фоторезиста под действием излучения становится неустойчивой и растворяется при проявлении, пленка негативного фоторезиста, наоборот, под действием излучения становится нерастворимой, в то время как неосвещенные участки при проявлении растворяются.

Свойства фоторезистов определяются рядом параметров:

· Чувствительность к излучению

В свою очередь, существуют некоторые критерии чувствительности: высокие защитные свойства локальных участков.

· Разрешающая способность фоторезиста.

· Кислостойкость (стойкость фоторезистов к воздействию агресивных травителей)

Технологический процесс фото литографии проводится в следующей последовательности:

1. Очистка поверхности подложки;

2. Нанесение фоторезиста (ФП-330) и распределение его по всей поверхности с помощью центрифугирования;

3. Сушка фоторезиста (15 мин при Т = 20 о С).

4. Совмещение фотошаблона с подложкой:

5. Экспонирование - засветка через фотошаблон УФ-лучами, t = 1ч2с;

6. Проявление: химическая обработка в специальных проявителях;

7. Задубливание производят для окончательной полимеризации оставшегося фоторезиста: термообработка при Т = 120 о С, t = 20мин;

8. Травление оксида кремния водным раствором плавиковой кислоты, лучше применяют буферные добавки солей плавиковой кислоты;

9. Удаление фоторезиста производится в щелочных средах.

10. Промывка пластины кремния в деионизованной воде с использованием УЗ и сушат при Т = 120 о С.

Для изготовления фотошаблонов используется, в основном, два метода. Первый метод основан на сочетании оптических и прецизионных механических процессов. Суть метода состоит в механическом вырезании первичного оригинала (увеличенного в 200…500 раз рисунка), в последующем фотографическом уменьшении размеров рисунка и его мультиплицировании. Во втором методе - фотоноборе - весь топологический рисунок разделяется на прямоугольники различной площади и с различным отношением сторон в зависимости от формы составляющих его элементов. Эти прямоугольники последовательной фотопечатью наносятся на фотопластинку, где, в конечном счете, образуется промежуточный фотошаблон с десятикратным увеличением рисунка по сравнению с заданным.

В данном курсовом проекте будем использовать позитивный фоторезист, т.е. свет разрушает полимерные цепочки: растворяются засвеченные участки. Позитивные фоторезисты обеспечивают более резкие границы растворённых (проявленных) участков, чем негативные, т.е. обладают повышенной разрешающей способностью, но имеют меньшую чувствительность и требуют большего времени экспонирования. Фотошаблон будет представлять собой стеклянную пластину, на одной из сторон которой нанесена тонкая непрозрачная плёнка Cr. Несколько капель раствора фоторезиста необходимо нанести

на окисленную поверхность кремниевой пластины, а потом с помощью центрифуги его распределить тонким (около 1мкм) слоем, высушить.

Существует контактная фотолитография, при которой фотошаблон плотно прилегает к поверхности подложки с нанесённым фоторезистом, и бесконтактная.

Бесконтактная фотолитография на микрозазоре основана на использовании эффекта двойного или множественного источника излучения. УФ-лучи подаются на фотошаблон под одинаковым углом, за счёт чего дифракционные явления сводятся к минимуму, и повышается точность передачи рисунка. Недостатком является очень сложное оборудование. Проекционная фотолитография основана на упрощённом процессе совмещения, т.к. с помощью специальных объективов изображение фотошаблона проектируется на пластину.

Удаление фоторезиста обычно производят в щелочных составах (NaOH).

12.Легирование. Легирование - введение примесей в пластину или эпитаксиальную плёнку. При высокой температуре (около 1000 о С) примесные атомы поступают через поверхность и распространяются вглубь вследствие теплового движения. Легирование полупроводников бывает трёх видов:

1. Диффузионное легирование - основано на использовании известного явления диффузии, т.е. направленного перемещения частиц вещества в сторону убывания их концентрации. Движущей силой является градиент концентрации атомов или молекул вещества. При диффузии выпрямляющие или концентрационные контакты получают в исходной пластине, изменяя ее свойства легированием на необходимую глубину. Диффузионные слои имеют толщины от сотых долей микрометров. Отличительной особенностью является неравномерное распределение концентрации примеси по глубине: концентрация максимальна возле поверхности и убывает вглубь слоя. Концентрация и распределение примеси во многом определяются свойствами примеси, легируемого материала и источника примеси.

2. Ионное легирование - осуществляется ионизированными атомами примеси, имеющими энергию, достаточную для внедрения в полупроводник. Также необходим отжиг для устранения радиационных нарушений структуры полупроводника и для электрической активации донорных и акцепторных примесей. Основной особенностью является возможность воспроизводимого получения заданной концентрации примеси на данной глубине практически на любой площади пластины. Это обусловлено тем, что можно с большой точностью задавать ток ионного луча. Распределениями примесей можно легко управлять в широких пределах, изменяя дозу облучения, энергию и угол падения ионов. Ионы примеси получают в специальных источниках, ускоряют и фокусируют в электрическом поле. Пучок ионов бомбардирует подложку. Ионы примеси размещаются в кристаллической решётке. Характеристики ионнолегированных слоев получаются более воспроизводимыми, чем при диффузии.

3. Радиационно-стимулиронанная диффузия - основана на внедрении примеси в результате бомбардировки кристалла лёгкими ионами с энергией, достаточной для смещения атомов подложки. Облучение проводится в процессе термообработки (t = 600-700 о С) или непосредственно перед ней.

Для данного курсового проекта будет использована высокотермическая диффузия, т.к. недостатком ионной имплантации является нарушение структуры поверхностного слоя и увеличение дефектов, а также сложность технологического оборудования. Диффузия будет проводиться традиционным методом открытой трубы из газообразных источников (BBr 3 ,PH 3) и твёрдых источников (оксид сурьмы).

13. Металлизация. Все системы металлизации, применяемые в настоящее время, можно разделить на следующие типы: однослойная, многослойная, многоуровневая, объемная (объемные выводы).

· Однослойная аллюминевая металлизация применяется преимущественно в ИМС малой степени интеграции, маломощных, работающих на частотах до 1 ГГц, не рассчитанные на высокие требования к надежности.

· Многослойная металлизация в ряде случаев полнее отвечает предъявляемым требованиям, но менее технологична, т.к. содержит не один слой металла. Обычно состоит из нескольких слоев: контактный слой - первый по порядку нанесения на кремниевую пленку (вольфрам, молибден, хром, никель, алюминий, титан, палладий, силициды тугоплавких металлов); разделительный слой - применяется в случаях, когда сложно подобрать согласующиеся материалы контактного и проводящего слов; проводящий слой - последний по порядку нанесения слой металлизации, должен иметь хорошую электропроводность и обеспечивать качественное надежное подсоединение контактных площадок к выводам корпуса (медь, алюминий, золото)

· Многоуровневая металлизация применяется в больших и сверхбольших ИМС. Увеличение числа элементов увеличивает и площадь межэлементных соединений, поэтому их размещают в несколько уровней.

В данном курсовом проекте будем проводить однослойная аллюминевую металлизацию.

14.Скрайбирование. Осуществлять скрайбирование необходимо алмазным резцом. Это приводит к образованию в пластине сравнительно глубоких (до 50…100мкм) и узких (до 25…40мкм) канавок. Достоинством этого скрайбирования является простота и низкая стоимость.

Разламывание пластин на кристаллы после скрайбирования необходимо осуществлять механически, приложив к ней изгибающий момент. Эту операцию выполняется на сферической опоре.

Достоинством этого способа являются простота, высокая производительность (ломка занимает не более 1…1.5мин) и одностадийность, а также достаточно высокое качество, так как кристаллы не смещаются относительно друг друга.

Укрупненные схемы технологических процессов изготовления полупроводниковых (монолитных) приведена ниже.

Рис. 1.

Опишем технологический процесс производства интегральной микросхемы генератора напряжения.

На первоначальном этапе происходит формирование слитков кремния и резка этих слитков алмазными дисками с внутренней режущей кромкой на пластины - базовые кристаллы, на которых будут сформированы в последствии элементы микросхем. Поверхность кристалла тщательно шлифуют для устранения поверхностных повреждений, полученных в результате резки. Производят полировку, причем разными материалами - алмазной суспензии, порошкообразными материалами. Затем производят очистку с целью удаления поверхностного слоя, в которых находятся поверхностные механические напряжения. Для этого над поверхностью пластины пропускают HCl при высокой температуре и обмывают кристалл деионизованной водой, растворами моющих порошков, проточной воде и, затем, сушат пластину до полного высыхания.

На следующем этапе производят окисление поверхности кристалла с целью образования двуокиси кремния с определенной толщиной.

Это делается для того, чтобы при проведении легирования, легированным оказался не весь кристалл, а только определенный участок.

Соответственным образом поверх слоя двуокиси кремния наносят слой фоторезиста, контактным (или другим способом) производят процесс фотолитографии. При этом используется фотошаблон (см. приложение). Открытые участки проявляют, задубливают и ликвидируют, и таким образом получают участок двуокиси кремния для последующего травления.

Образовавшиеся окна травят, в результате область подложки становится открытой для последующего легирования и образования скрытого n+ слоя. Слой фоторезиста ликвидируют. Поверхность оксида кремния тщательным образом очищают, омывают в проточной деионизованной воде и сушат центрифугированием. Таким образом, подложка становится полностью готовой для проведения операции легирования.

Для получения высоколегированного слоя n+ типа, производится высокотермическая диффузия сурьмой до предела ее растворимости. Таким образом, формируется скрытый n+ слой. Производится разгонка сурьмы в n+ кармане.

Слой двуокиси кремния стравливают в плавиковой кислоте, образуется открытая поверхность подложки с тремя участками высоколегированного слоя. Поверхность подложки тщательно очищают химическими методами и омывают в проточной деионизованной воде. После проведения этих операций, подложка становится готовой к проведению эпитаксиального наращивания кремния n-типа проводимости. Таким образом получают т.н. коллекторный слой, который присутствует в структурах активных элементов, и в этом же слое формируются резисторы среднего номинала (5кОм, 10 кОм), также этот слой присутствует в структуре МДП-конденсатора.

Далее производят разделительную диффузию с целью отделения одних элементов от других. Для этого повторяют ранее описанные процессы: нанесение слоя двуокиси кремния, нанесение фоторезиста, совмещение с фотошаблоном (см. приложение), экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя двуокиси кремния в окне фоторезиста. После этого производят разделительную диффузию путем легирования бора в эпитаксиальный слой на поверхности подложки.

Для каждого элемента таким образом образовался свой эпитаксиальный слой. Далее производят диффузию фосфора в эпитаксиальный слой с целью создания базовой области. Для этого повторяют ранее описанные процессы: нанесение слоя двуокиси кремния, нанесение фоторезиста, совмещение с фотошаблоном, экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя двуокиси кремния в окне фоторезиста. Затем производится легирование фосфором (см. приложение). Базовая область используется как база у активных элементов и в качестве резистивного слоя у резисторов.

Далее создаются области, которые у активных элементов используются как эмиттерная область, у резисторов она может отсутствовать. Перед этим производится совокупность ранее описанных процессов: нанесение слоя двуокиси кремния, нанесение фоторезиста, совмещение с фотошаблоном, экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя двуокиси кремния в окне фоторезиста. Затем производится легирование сурьмы (см. приложение) и ликвидация фоторезиста и слоя двуокиси кремния с последующей тщательной очисткой поверхности.

После этого кристалл готов к нанесению на его поверхность внешней изоляции и нанесения алюминиевых выводов на базовую, коллекторную имиттерную области кристалла. Для этого производят тщательную очистку поверхности кристалла и осаждают нитрид кремния. Затем производят нанесение фоторезиста, совмещение с фотошаблоном, экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя нитрида кремния в окне фоторезиста и удаление фоторезиста со вcей поверхности нитрида кремния.

Затем на всю поверхность кристалла наносят сплав алюминия и кремния методом катодного распыления. Далее производят операцию фотолитографии и травление алюминия. Таким образом производится электрическое соединение элементов схемы в соответствии со схемой электрической принципиальной.

Вся поверхность кристалла подлежит тщательной очистке и сушке центрифугированием. Затем на поверхность кристалла наносится слой двуокиси кремния методом окисления моносилана. Производится изготовление окон в изоляционном слое для соединения токоведущих дорожек микросхемы с внешними выводами.

Современный мир настолько компьютеризирован, что наша жизнь практически не представляется без существования электронных приборов, сопровождающие нас во всех сферах нашей жизни и деятельности.
А прогресс не стоит на месте, а продолжается непрерывно совершенствоваться: устройства уменьшаются и становятся более мощные, более емкостные и более производительные. В основе этого процесса находится технология производства микросхем , представляющая собой в упрощенном варианте соединение нескольких без корпусных диодов, триодов, транзисторов, резисторов и других активных электронных компонентов (иногда их число в одной микросхеме достигает нескольких миллионов), объединенных одной схемой.

Полупроводниковые кристаллы (кремний, германия, оксид гафния, арсенид галлия) - являются основой производства всех микросхем. На них выполняются все элементные и межэлементные соединения. Самым распространенным из них является кремний, так как он по своим физико-химическим качествам, больше всех подходит для этих целей, полупроводником. Дело в том что полупроводниковые материалы относятся к классу с электрической проводимостью, находящейся между проводниками и изоляторами. И могут выступать в роли проводников и диэлектриков в зависимости от содержания в них других химических примесей.

Микросхемы создаются путем последовательного создания различных слоев на тонкой полупроводниковой пластине, которые предварительно полируются и доводятся механическими или химическими способами до зеркального блеска. Поверхность ее обязательно должна быть совершенно гладкой на атомном уровне.

Видео-этапы производства микросхемы:

При формировании слоев, из-за того что рисунки наносимые на поверхность пластины настолько малы, поэтому материал формирующий впоследствии рисунок осаждают сразу на всю поверхность, а потом удаляют ненужное, используя процесс фотолитографии.

Фотолитография является одним из главных этапов производства микросхемы и чем то напоминает производство фотографии. На поверхность ранее нанесенного материала так же ровным слоем наносится специальный светочувствительный материал (фоторезист), затем он высушивается. Далее через специальный фотошаблон на поверхность слоя проецируется необходимый рисунок. Под воздействием ультрафиолета отдельные участки фоторезиста меняют свои свойства - крепчает, поэтому необлученные участки впоследствии удаляются. Этот способ нанесения рисунка является настолько эффективным по своей точности, что будет еще использоваться долгое время.

Далее следует процесс электрического соединения между транзисторами в микросхемах, объединяющие транзисторы в отдельные ячейки, а ячейки в отдельные блоки. Межсоединения создаются в несколько металлических слоев законченных микросхем. В качестве материалов в производстве слоев используется в основном медь, а для особо производительных схем используется золото. Количестве слоев электрических соединений зависит от мощности и производительности создаваемой микросхемы - чем она мощнее том больше содержит в себе этих слоев.

Таким образом получается сложная трехмерная структура электронной микросхемы толщиной несколько микрон. Затем электронную схему покрывают слоем диэлектрического материала толщиной несколько десятков микрон. В нем лишь открывают лишь контактные площадки, через которые впоследствии подаются в микросхему питание и электрические сигналы из вне. Снизу крепится кремневая пластина толщиной в сотни микрон.

По окончании процесса производства кристаллы на пластине тестируются каждая в отдельности. Потом каждый чип упаковывается в свой корпус, при помощи которого и появляется возможность подключения его к другим приборам. Несомненно тип упаковки зависит от предназначения микросхемы и способов ее использования. Упакованные чипы проходят основной этап стресс теста: воздействие температур, влажности, электричества. И уже по результатам теста отбраковываются, сортируются и классифицируются по спецификациям.


Важным в процессе производства деталей микроуровня, какими являются микросхемы - это идеальная чистота помещений для производства. Поэтому для обеспечения идеальной чистоты используются специально-оборудованные помещения, которые в первую очередь являются полностью герметичными, оснащены микрофильтрами для очистки воздуха, персонал, работающий в этих помещениях, имеет спецодежду, препятствующую проникновения туда каких либо микрочастиц. Кроме того в таких помещениях обеспечивается определенная влажность, температура воздуха, строятся они на фундаментах с защитой от вибраций.

Видео - экскурсия на завод где производят микросхемы:

Назад Вперед -



У вас есть Бизнес Идея? На нашем сайте Вы можете рассчитать её Рентабельность в режиме Онлайн!

Технология изготовления микросхем

Все элементы ИС и их соединения выполнены в едином технологическом цикле на общей подложке.

Технологические процессы:

а) наращивание полупроводникового материала на кремниевой подложке;

б) термическое окисление кремния для получения слоя окисла SiO 2 , защищающего поверхность кристалла от внешней среды;

в) фотолитография, обеспечивающая требуемые конфигурации пленок(SiO 2 , металл и т.п.) на поверхности подложки;

г) локальная диффузия – перенос примесных атомов в ограниченные области полупроводника (в настоящее время – ионная имплантация легирующего вещества);

д) напыление тонких (до 1 мкм) пленок;

е) нанесение толстых (более 1 мкм) пленок путем использования специальных паст с их последующим вжиганием.

ИС изготавливаются методами интегральной технологии , имеющей следующие отличительные особенности :

1. Элементы, однотипные по способу изготовления, представляют собой или полупроводниковые p-n структуры с несколькими областями, различающиеся концентрацией примесей или пленочные структуры из проводящих, резистивных и диэлектрических пленок.

2. Одновременно в едином технологическом цикле изготавливается большое количество одинаковых функциональных узлов, каждый из которых, в свою очередь, может содержать до сотен тысяч и более элементов.

3. Сокращается количество технологических операций (сборка, монтаж элементов) на несколько порядков по сравнению с традиционными методами производства аппаратуры на дискретных элементах.

4. Размеры элементов и соединений между ними уменьшаются до технологически возможных пределов.

5. Низконадежные соединения элементов, выполненные с помощью пайки, исключаются и заменяются высоконадежными соединениями (путем металлизации).

Последовательность основных этапов построения полупроводниковой ИС :

1. Выращивание кристалла кремния.

2. Разрезка на пластины (200…300мкм, Ø 40 – 150мм).

3. Очистка поверхности пластин.

4. Получение элементов и их соединений на пластине.

5. Разрезка пластин на отдельные части (кристаллы).

6. Закрепление в корпусе.

7. Подсоединение выводов с контактными площадками.

8. Герметизация корпуса.

Пр. Фотолитография :

1. Очистка пластин.

2. Нанесение фоторезистора.

4. Совмещение с фотошаблоном и экспонирование.

5. Травление SiO 2 .

6. Задубливание (сушка).

7. Проявление.

8. Удаление фоторезистора.

Пр. Толстопленочная технология :

1. Очистка подложек.

2. Трафаретная печать.

Все мы в той или иной степени пользуемся банковскими, социальными, а также SIM-картами, не говоря уже о проездных на метро. Все эти вещи объединяет одно - в основе их функционирования лежит микрочип. Микроэлектронка является одной из самых высокотехнологичных и наукоемких отраслей промышленности. Более 90% инноваций, которые появляются в мире, созданы за счет развития микроэлектроники.



Все микрочипы, используемые в России, рождаются в одном месте - на зеленоградском заводе «НИИМЭ и Микрон», входящему в группу компаний «СИТРОНИКС Микроэлектроника».

В основе любой микросхемы или чипа - кремний.


Кремний обрабатывается в монокристалл. Режется на пластины толщиной в два бумажных листа и диаметром 750 микрон. В таком виде его и закупает завод.


Дальше, на производстве, исходя из дальнейшего предназначения, пластина обрабатывается (порядка 200–300 операций) и разрезается на маленькие кусочки равного размера. На одной пластине помещается несколько десятков тысяч чипов с трехмерной структурой.


Сначала пластину очищают от пыли в ионизированной воде и обрабатывают специальными реактивами. Затем ее подвергают термической обработке.

Пластины с микрочипами переносятся в smif-контейнере. Контейнер защищает пластины от внешних воздействий и грязи. SMIF-контейнер - это маленькая «особо чистая комната». Там создан класс чистоты фактически 0.00 единиц на кубический метр.


Сердце микроэлектронного производства – чистая комната. Производственный процесс в ней идет круглосуточно, не останавливаясь даже ночью. Почти весь процесс изготовления микрочипов автоматизирован, что сокращается потребность в людских ресурсах.


Важнейшим и основообразующим элементом на заводе является чистота. Для микрочипа любая пылинка - то же, что и булыжник для человека. Работать можно только в специальном костюме, пронизанном углеродной нитью и обладающим пылеотталкивающими свойствами. Сотрудникам, работающим в чистой комнате, запрещено пользоваться косметикой. Количество микрочастиц в воздухе контролируется при помощи четырехуровневой системы фильтрации.


На заводе существует два технологических процесса производства микросхемы: 90 нанометров и 180. Это означает, что минимальный размер элемента на чипе составляет 90 нанометров. Один нанометр равен одной миллиардной метра. Структура 90нм является более быстродейственной, энергоемкой и надежной. Ее запустили в феврале этого года при содействии «Роснано». Загруженность линии 90нм пока всего лишь 25%, тогда как 180 - 80%.


В проекте разработки производства чипов 90 и 180 нанометров приняло участие более 70 компаний из 17 стран мира. Все оборудование, все материалы поставляются на завод из-за рубежа.

Компании, сотрудничающие с «СИТРОНИКС Микроэлектроника»

На момент запуска производства 90нм лишь 7 стран в мире обладало схожей технологией. Однако в Европе уже идет выпуск структур 65, 43 и 32 нм, тогда как у нас пока лишь 90. Но и это, безусловно, прорыв. Запустив производство чипов с топологическим уровнем 90нм, мы сократили отставание от мировых лидеров на 5 технологических поколений, что равняется десяти обычным годам. Также СИТРОНИКС Микроэлектроника с 2013 года планирует приступить в разработке отечественных технологий уровня 65нм.



Производство для России действительно важное и одно из немногих, где мы можем составить конкуренцию западным производителям на внутреннем рынке. Однако, как признаются сотрудники завода, процесс разработки новых технологий сильно зависит от государственной поддержки, поэтому остается надеяться на лучшее и ждать.

Вам не приходилось бывать в сердце полупроводниковой индустрии - на фабрике по производству микросхем?

Вам не приходилось бывать в сердце полупроводниковой индустрии - на фабрике по производству микросхем? Каждое подобное сооружение - творение, способное впечатлить любого, даже непосвященного в производственные процессы человека.

У побывавших там возникало ощущение, будто совершаешь фантастическое путешествие в футуристический муравейник роботов или внутрь самой микросхемы. Там, в стерильном зале размером с три футбольных поля, снуют роботы и десятки специалистов, облаченных в скафандры и защитные шлемы. А высокоточные машины для производства микросхем «парят» на специальных платформах, освещенные желто-оранжевым светом…

Этапы производства кристаллов микросхем и фотолитография

Интегральные микросхемы делают на поверхности монокристаллического кремния (Кремний (Si) используется потому, что он является наиболее подходящим для этих целей полупроводником. В свою очередь, полупроводники - это класс материалов, чья электрическая проводимость находится посреди между проводимостью проводников (главным образом, металлов) и изоляторов (диэлектриков). Кремний также может выступать как в качестве диэлектрика, так и в качестве проводника - в зависимости от количества и типа присутствующих в нем примесей других химических элементов. И эта особенность широко используется при производстве микросхем. Впрочем, в редких случаях вместо кремния применяют и другие материалы. В частности, Intel умеет внедрять в свой 90-нм техпроцесс биполярные транзисторы с гетеропереходами (HBT) на кремний-германии (SiGe)) путем последовательного создания различных слоев на тонкой (меньше миллиметра) круглой (диаметром до 30 см) кремниевой пластине, именуемой подложкой [Тонкие пластины нарезаются из тяжеленной длинной цилиндрической болванки монокристаллического кремния, которая выращивается специальным прецизионным способом. Затем пластины полируются до зеркального блеска механическими и химическими методами. «Рабочая» поверхность (то есть та, на которой далее создается микросхема) пластины должна быть гладкой и совершенной на атомарном уровне и иметь весьма точную кристаллографическою ориентацию (подобно различным граням бриллианта при огранке, но еще более совершенной)]. Слои формируются при помощи различных процессов с использованием химических реактивов, газов и света. Производство современных микропроцессоров является сложным процессом, состоящим из трехсот с лишним шагов - более двадцати слоев «витиевато» соединены между собой, дабы сформировать схему микропроцессора с трехмерной структурой. Точное число слоев на подложке (вафле) зависит от дизайн-проекта конкретного процессора. Сотни идентичных микропроцессоров создаются на одной кремниевой подложке и на финальной стадии разрезаются на отдельные прямоугольные кристаллы - чипы.

Процессы формирования различных слоев и рисунков элементов микросхемы на подложке достаточно хитроумны (фактически это целая область науки), однако в их основе лежит одна простая идея: поскольку характерные размеры создаваемого рисунка настолько малы (Например, ячейка кэш-памяти процессора на 90-нм ядре Prescott в сто раз меньше красной кровяной клетки (эритроцита), а один ее транзистор - величиной с вирус гриппа), что осаждать те или иные материалы в нужных местах просто невозможно, поступают проще - материал осаждают сразу на всю поверхность подложки, а затем его аккуратно удаляют из тех мест, где он не нужен. Для этого служит процесс фотолитографии.

Что такое «чистая комната» и почему они используются на полупроводниковых фабриках?

Кристаллы микросхем должны производиться в условиях контролируемого и очень чистого воздуха. Поскольку функциональные элементы (транзисторы, проводники) на микрочипах очень малы, любая чужеродная частица (пыль, дым или чешуйки кожи), попавшая на пластину с будущими микросхемами на промежуточных стадиях ее производства, способна вывести из строя целый кристалл. «Чистые комнаты» классифицируются по размеру и количеству микрочастиц, присутствующих в единице объема (кубическом футе, примерно равном одной тридцатой части кубометра) воздуха. Например, комнаты класса 1, используемые в современном производстве, примерно в тысячу раз чище, чем хирургическая операционная. «Чистая комната» управляет чистотой воздуха путем фильтрации поступающего воздуха, удалением грязи с установок, ламинарным перемещением воздуха от потолка к полу (примерно за шесть секунд), регулировкой влажности и температуры. Люди в «чистых комнатах» ходят в специальных скафандрах, закрывающих, в том числе, весь волосяной покров (а в ряде случаев - даже с собственной системой дыхания). Для устранения вибраций чистые комнаты располагаются на собственном виброзащитном фундаменте.

Фотолитография является незыблемой основой производства микросхем, и в обозримом будущем ей вряд ли найдется достойная замена. Поэтому имеет смысл рассмотреть ее подробнее. Например, нам нужно создать рисунок в слое какого-то материала - диоксида кремния или металла (это наиболее распространенные в современном производстве операции). Прежде всего, на подложке тем или иным способом создается тонкий (обычно тоньше одного микрона) и сплошной, без дефектов, слой нужного материала. Далее на нем проводится фотолитография. Для этого сперва на поверхность пластины наносится тонкий слой светочувствительного материала, называемого фоторезистом (Фоторезист наносится из жидкой фазы, равномерно распределяется по поверхности пластины вращением в центрифуге и сушится до затвердевания). Затем пластина с фоторезистом помещается в прецизионную установку, где нужные участки поверхности облучаются ультрафиолетом сквозь прозрачные отверстия в фотомаске (ее еще называют фотошаблоном). Маска содержит соответствующий (наносимый на поверхность пластины) рисунок, который разрабатывается для каждого слоя в процессе проектирования микросхемы. Под действием ультрафиолета облученные участки фоторезиста меняют свои свойства так, что становится возможным их селективно удалить в определенных химических реактивах (Существует негативный и позитивный фоторезист. Один при облучении «крепчает», поэтому удаляют его необлученные участки, а другой, наоборот, теряет химическую стойкость, поэтому удаляются его облученные участки. Соответственно, различают позитивную и негативную фотолитографию). После снятия фоторезиста остаются открытыми только те области поверхности пластины, над которыми требуется совершить нужную операцию - например, убрать слой диэлектрика или металла. Они успешно удаляются (эта процедура называется травлением - химическим или плазмохимическим), после чего остатки фоторезиста можно окончательно убрать с поверхности пластины, оголив сформированный в слое нужного материала рисунок для дальнейших действий.Фотолитография завершена.

При производстве современных микропроцессоров приходится совершать операции фотолитографии до 20–25 раз - каждый раз над новым слоем. В общей сложности это занимает несколько недель! В одних случаях это слои изолирующих материалов, служащих подзатворным диэлектриком транзисторов или пассивирующими (изолирующими) прослойками между транзисторами и проводниками. В других - это формирование проводящих поликремневых затворов транзисторов и соединяющих транзисторы металлических проводников (В целях упрощения часть операций иногда совмещают - например, так называемые самосовмещенные затворы изготавливаются на базе одной и той же фотолитографии одновременным формированием рисунка подзатворного диэлектрика и тонкого поликремниевого затвора). В третьих - это формирование селективно легированных областей (главным образом - стоков и истоков транзисторов), причем легирование участков поверхности монокристаллической кремниевой пластины ионизированными атомами различных химических элементов (с целью создания в кремнии полупроводниковых областей n- или p-типа) производится не через окна в фоторезисте (он слишком нестоек для этого), а сквозь рисунок в достаточно толстом слое нанесенного диэлектрика (например, того же оксида кремния). После чего диэлектрик удаляется вместе с фоторезистом.

Иногда применяется и такой интересный метод, как взрывная фотолитография. То есть сперва формируется рисунок (вытравливаются окна в фоторезисте или временном слое диэлектрика), затем на поверхность пластины наносится сплошной слой нового материала (например, металла), и, наконец, пластина помещается в реактив, удаляющий остатки фоторезиста или временный диэлектрик. В результате удаляемый слой как бы «взрывается» изнутри, унося с собой лежащие на нем куски нанесенного последним металла, а в предварительно «открытых» участках (окнах) металл остался и сформировал нужный нам функциональный рисунок (проводников или затворов). И это только верхушка айсберга, называемого микроэлектронной технологией, в основе которой лежит принцип фотолитографии.

Таким образом на поверхности кремниевой пластины создается сложная трехмерная структура толщиной в несколько микрон, которая, собственно, и является электронной схемой. Сверху схема покрывается толстым (микроны) слоем пассивирующего диэлектрика, защищающего тонкую структуру от внешних воздействий. В нем лишь открываются окна для больших, стороной в десятки микрон, квадратных металлических контактных площадок, через которые на схему подаются извне питающие напряжения и электрические сигналы. А снизу механической основой микросхемы служит кремниевая пластина толщиной в сотни микрон. Теоретически, такую схему можно было бы сделать очень тонкой (10–30 мкм) и при желании даже «свернуть в трубочку» без потери функциональности. И подобные работы уже некоторое время ведутся в отдельных направлениях, хотя традиционные кристаллы микросхем (чипы) по-прежнему остаются «несгибаемыми».

После завершения технологических процедур каждый из кристаллов на пластине тестируется (подробнее об этом - в следующей статье), а потом пластина разрезается на отдельные кристаллы (прямоугольные чипы) при помощи алмазной пилы (Перед разрезанием на кристаллы толщина пластины у современных микропроцессоров уменьшается примерно на треть при помощи механической полировки. Это позволяет помещать их в более компактные корпуса. Полировка обратной стороны преследует также цели удаления посторонних материалов с последующим формированием электрического и адгезионного контактов к подложке при корпусировке). Далее каждый чип упаковывается в свой корпус, что позволяет подключать его к другим приборам. Тип упаковки зависит от типа микросхемы и от того, как она будет использоваться. Напоследок все упакованные чипы тестируются еще раз (негодные отбраковываются, годные проходят специальные стресс-тесты при различных температурах и влажности, а также проверку на электростатический разряд), сортируются по характеристикам и соответствию тем или иным спецификациям и отгружаются заказчику.

Технология Intel Copy Exactly

У большинства производителей микросхем оборудование и процессы, используемые в лабораториях для исследований и разработок, отличаются от того, что применяется на фабриках производства готовой продукции. И при переводе производства с опытного на серийное часто возникают серьезные задержки, связанные с тем, что на новом оборудовании требуется заметно дорабатывать и адаптировать технологические процессы, чтобы достичь высокого процента выхода годной продукции, ранее полученного в лабораториях. Это не только задерживает массовое производство, но и приводит к изменениям сотен параметров техпроцессов и даже конечных изделий. То же самое справедливо, если процесс, отлаженный на одной фабрике, переносится на другую с новым оборудованием.

Чтобы предотвратить возможные издержки, корпорация Intel, имеющая уже более десятка полупроводниковых фабрик, несколько лет назад внедрила у себя технологию Copy Exactly, суть которой в том, что при переносе технологии изготовления того или иного продукта из лаборатории на фабрику или между разными фабриками производится полное, до мелочей повторение (дупликация) всего, что с этим техпроцессом связано. Для этого, в частности, менеджеры с заводов участвуют в разработке продукта. А при переносе технологии копируется буквально все - не только входные и выходные параметры процессов (более 500!), но и их протекание, оборудование и параметры его настроек, поставщики исходных материалов для техпроцессов, трубопроводная система, чистые комнаты и даже методики обучения персонала.

Эта новаторская методика переноса технологий оказалась очень успешной. Сегодня она позволяет заводам выходить на полную мощность практически сразу после запуска - в течение нескольких недель. К тому же технология Copy Exactly придает фабрикам одной корпорации большую гибкость: начатые на одном заводе, пластины без ущерба для качества и выхода годных могут быть завершены на другом. А в случае аварии или реорганизации одной из фабрик другие «подхватят» ее дело и бизнес практически не пострадает. Эту технологию по достоинству оценивают и конкуренты - например, AMD и IBM, - хотя между ними в настоящее время она неприменима, поскольку их технологические маршруты несколько различаются.

Полупроводниковые фабрики

Сейчас в промышленности по производству чипов подходит к завершению одна из тех революций, которые раз в десятилетие меняют облик индустрии. Изготовители переходят от подложек диаметром 200 мм к подложкам диаметром 300 мм (см. фото справа), в результате чего появляется возможность заметно удешевить производство микросхем, а вместе с этим - всей электронной полупроводниковой продукции. Дело в том, что подложка диаметром 300 мм обеспечивает 225-процентное увеличение площади кремниевой пластины и 240-процентное увеличение полезного выхода чипов с каждой подложки. Кроме того, значительно улучшаются и экологические характеристики производства, которое требует меньшего расхода химических реактивов и энергии в пересчете на каждый процессор, создает меньше отходов. По данным Intel, по сравнению с заводом, работающим на 200-миллиметровых подложках, новая фабрика выбрасывает на 48% меньше летучих органических веществ, расходует на 42% меньше сверхчистой воды и примерно на 40% меньше энергии. На 50% сокращаются затраты труда.

Современные «300-мм» фабрики - это гигантские промышленные предприятия стоимостью около 2 млрд. долларов и площадью более сотни тысяч квадратных метров. Лишь немногие из современных компаний-производителей чипов (двадцатку лидеров см. во врезке на стр. 34) могут позволить себе вложения в такие дорогие фабрики. Ведь для постройки и дальнейшей эксплуатации подобных предприятий требуется достичь уровня ежегодных продаж в размере как минимум 6 млрд. долларов в расчете на каждую фабрику. Подобные фабрики принято называть «foundry» - один из переводов этого термина на русский язык означает «литейное производство». Название олицетворяет колоссальный индустриальный масштаб: ювелирный процесс изготовления высокотехнологичных элементов микропроцессоров становится на промышленный поток, масштаб которого сравним разве что с масштабом производства продукции огромными металлургическими цехами. В 2000 году, когда продажи чипов были на подъеме, всего десять компаний в мире имели объемы продаж выше 6 млрд. долларов. Из «старой гвардии» сегодня только Intel, IBM, Infineon, AMD, Texas Instruments и Samsung владеют собственными действующими фабриками по производству микросхем на 300-мм подложках. Другие создаются и управляются совместно объединениями компаний - например, «Motorola - Philips - STMicroelectronics - Taiwan Semiconductor». Несомненным лидером в планах постройки новых фабрик является Тайвань. Уже в 2001 году на острове была изготовлена пятая часть всего мирового производства подложек, а к 2010 году эта доля может достичь 40%. На пятки Тайваню наступают Китай, Малайзия и Сингапур - они планируют построить 15 фабрик, пять из которых будут работать на 300-мм пластинах.

У корпорации Intel таких действующих в промышленном масштабе фабрик уже четыре: F11X в Рио-Ранчо (штат Нью-Мексико), две - D1C и D1D - в Хиллсборо (штат Орегон) и недавно введенная в строй Fab 24 в ирландском городке Лейкслип (Leixlip). Все они могут выпускать процессоры по 90-нм технологии; пятая же, Fab 12 в Чандлере (штат Аризона) для 65-нм техпроцесса, будет переведена на 300-мм пластины к 2005 году. А, например, у AMD ввод в строй первой 300-мм фабрики Fab 36 планируется лишь в следующем году, см. обзор на www.terralab.ru/system/33692. Как полагают эксперты, существующие фабрики с 200-мм подложками смогут продержаться «на плаву» до 2005 года, после чего они уже не смогут выдержать ценовой конкуренции с 300-мм процессом. К 2005 году чипы будут делаться по технологии 65 нм, а на микропроцессорах будет интегрировано по миллиарду транзисторов! Чипы станут настолько крошечными, что позволят встраивать сотовые телефоны с голосовым набором номера в авторучку.

Почему фабрики для производства микросхем так дороги (до 5 млрд. долларов)? Полупроводниковые фабрики выполняют наиболее сложные задачи среди всех фабрик в мире. Они используют только специализированные материалы, болты, конструктивные элементы, оборудование и пр. Кроме того, интеловские фабрики, например, почти вдвое больше, чем средний размер подобных заводов в мире. Само здание стоит примерно 25% от общей стоимости фабрики и еще лет десять после постройки остается сооружением, пригодным для решения самых современных задач. Оборудование (установки для фотолитографии, газофазного осаждения, ионной имплантации) и автоматы на этаже стоят остальные 75%.

Дополнительные измерения проводятся для того, чтобы убедиться в виброустойчивости фундамента и установок. Даже если фабрика - внешне одно здание, на самом деле это несколько зданий, отделенных друг от друга набольшими (до 10 см) промежутками, и каждое здание имеет собственный фундамент. Это помогает гасить различные вибрации - как от внешних источников (автотранспорта, поездов), так и собственных вибраций оборудования.

Любопытные факты о первой 300-мм фабрике Intel Fab 11X
  • Автоматизированная система обработки подложек фабрики Fab 11X включает в себя более 5 км монорельсовых дорог и 165 кареток для доставки контейнеров с подложками на обрабатывающие центры завода.
  • Компьютерная система, обслуживающая Fab 11X, насчитывает триста серверов, полтысячи клиентских компьютеров, 25 тысяч гигабайт дисковой памяти, более 40 км оптоволоконного и более 900 км медного сетевого кабеля.
  • Fab 11 значительно превосходит по масштабам все ранее существовавшие в мире полупроводниковые производства. Общая площадь «чистых» помещений завода составляет 27 тысяч квадратных метров. С открытием Fab 11X этот показатель увеличится примерно на 18 тысяч квадратных метров.
  • На пике строительства в сооружении F11X участвовало 3 тысячи человек, отработавших в общей сложности 5,3 млн. часов. При этом уровень травматизма оказался рекордно низким - вчетверо ниже среднестатистического для строительной отрасли США.
  • Чтобы пересечь в среднем темпе все «чистые» помещения Fab 11 и Fab 11X, потребуется не менее десяти минут.
  • Затраты рабочего времени в человеко-часах на каждый день строительства F11X были выше затрат времени на строительство двух жилых домов.
  • На строительство F11X ушло около 50 тысяч кубометров (около 6700 машин) бетона. Таким количеством бетона можно было бы покрыть десятиметровым слоем футбольное поле.
  • Под заводом устроено 1300 подземных кессонов глубиной 15–25 метров каждый. На подземную часть здания ушло больше бетона, чем на надземную.