Угол между двумя плоскостями формула. Угол между двумя пересекающимися плоскостями: определение, примеры нахождения

Задача 1.6. Дан куб. M, N, P - середины соответственно рёбер, AB, BC. Найти угол между плоскостями (MNP) и

а) Введем прямоугольную декартову систему координат так, как указано на рисунке 17. Длину ребра куба можно выбрать произвольно, поскольку при гомотетии величина угла между плоскостями не меняется. Удобно, например, взять длину ребра куба, равную 2.

Относительно выбранной системы координат найдем координаты точек и векторов:

б) Пусть - нормальный вектор плоскости.

В этом случае выполняются условия

Аналогично, если - нормальный вектор плоскости, тогда

в) Если, то

Ответ:

Задача 1.7. В основании правильной треугольной пирамиды SABC лежит правильный со стороной, равной 2. Ребро SA перпендикулярно плоскости основания и SA = 1. Точки P, Q - соответственно середины ребер SB, СВ. Плоскость параллельна прямым SC и АВ, а плоскость параллельна прямым AQ и СР. Определить величину угла между плоскостями и.

а) Выберем прямоугольную декартову систему координат так, как указано на рисунке 18. В выбранной системе координат имеем:


б) - нормальный вектор плоскости, параллельной прямым SCи AB. тогда выполняются условия:

в) Обозначим через плоскость, которая параллельна прямым AQи CP, а через - ее нормальный вектор. В этом случае получаем систему вида

Цели:

  • выработать умение рассматривать различные подходы к решению задач и проанализировать “эффект” от применения этих способов решения;
  • выработать умение учащегося выбирать метод решения задачи в соответствии со своими математическими предпочтениями, базирующимися на более прочных знаниях и уверенных навыка;
  • выработать умение составить план последовательных этапов для достижения результата;
  • выработать умение обосновать все предпринимаемые шаги и вычисления;
  • повторить и закрепить различные темы и вопросы стереометрии и планиметрии, типовые стереометрические конструкции, связанные с решением текущих задач;
  • развить пространственное мышление.
  • анализ различных методов решения задачи: координатно-векторный метод, применение теоремы косинусов, применение теоремы о трех перпендикулярах;
  • сравнение преимуществ и недостатков каждого метода;
  • повторение свойств куба, треугольной призмы, правильного шестигранника;
  • подготовка к сдаче ЕГЭ;
  • развитие самостоятельности при принятии решения.

Схема урока

В кубе ABCDA 1 B 1 C 1 D 1 с ребром 1 точка О – центр грани ABCD .

а) угол между прямыми A 1 D и BO ;

б) расстояние от точки B до середины отрезка A 1 D .

Решение пункта а).

Поместим наш куб в прямоугольную систему координат как показано на рисунке, вершины A 1 (1; 0; 1), D (1; 1; 0), B 1 (0; 0; 1), O (½; ½; 0).

Направляющие векторы прямых A 1 D и B 1 O:

{0; 1; -1} и {½; ½; -1};

искомый угол φ между ними находим по формуле:

cos∠φ = ,
откуда∠φ = 30°.

2 способ. Используем теорему косинусов.

1) Проведем прямую В 1 С параллельно прямой A 1 D . Угол CB 1 O будет искомым.

2) Из прямоугольного треугольника BB 1 O по теореме Пифагора:

3) По теореме косинусов из треугольника CB 1 O вычисляем угол CB 1 O:

cos CB 1 O = , искомый угол составляет 30°.

Замечание. При решении задачи 2-м способом можно заметить, что по теореме о трех перпендикулярах COB 1 = 90° , поэтому из прямоугольного ∆ CB 1 O также легко вычислить косинус искомого угла.

Решение пункта б).

1 способ. Воспользуемся формулой расстояния между двумя точками

Пусть точка E – середина A 1 D , тогда координаты E (1; 1/2; ½), B (0; 0; 0).

BE = .

2 способ. По теореме Пифагора

Из прямоугольного ∆ BAE с прямым BAE находим BE = .

В правильной треугольной призме ABCA 1 B 1 C 1 все ребра равны a . Найти угол между прямыми AB и A 1 C .

1 способ. Координатно-векторный метод

Координаты вершин призмы в прямоугольной системе при расположении призмы, как на рисунке: A (0; 0; 0), B (a; ; 0), A 1 (0; 0; a), C (0; a; 0).

Направляющие векторы прямых A 1 C и AB :

{0; a; -a} и {a ; ; 0} ;

cos φ = ;

2 способ. Используем теорему косинусов

Рассматриваем ∆ A 1 B 1 C , в котором A 1 B 1 || AB . Имеем

cos φ = .

(Из сборника ЕГЭ-2012. Математика: типовые экзаменационные варианты под ред. А.Л.Семенова, И.В.Ященко)

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все рёбра которой равны 1, найдите расстояние от точки E до прямой B 1 C 1 .

1 способ. Координатно-векторный метод

1) Поместим призму в прямоугольную систему координат, расположив координатные оси, как показано на рисунке. СС 1 , СВ и СЕ попарно перпендикулярны, поэтому можно направить вдоль них координатные оси. Получаем координаты:

С 1 (0; 0; 1), Е (; 0; 0), В 1 (0;1;1) .

2) Найдем координаты направляющих векторов для прямых С 1 В 1 и С 1 Е :

(0;1;0), (;0;-1).

3) Найдем косинус угла между С 1 В 1 и С 1 Е , используя скалярное произведение векторов и :

cos β = = 0 => β = 90° => C 1 E – искомое расстояние.

4) С 1 Е = = 2.

Вывод: знание различных подходов к решению стереометрических задач позволяет выбрать предпочтительный для любого учащегося способ, т.е. тот, которым ученик владеет уверенно, помогает избежать ошибок, приводит к успешному решению задачи и получению хорошего балла на экзамене. Координатный метод имеет преимущество перед другими способами тем, что требует меньше стереометрических соображений и видения, а основывается на применении формул, у которых много планиметрических и алгебраических аналогий, более привычных для учащихся.

Форма проведения урока – сочетание объяснения учителя с фронтальной коллективной работой учащихся.

На экране с помощью видеопроектора демонстрируются рассматриваемые многогранники, что позволяет сравнивать различные способы решения.

Домашнее задание: решить задачу 3 другим способом, например, с помощью теоремы о трех перпендикулярах.

Литература

1. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по геометрии для 11 класса.– М.: ИЛЕКСА, – 2010. – 208 с.

2. Геометрия, 10-11: учебник для общеобразовательных учреждений: базовый и профильный уровни / Л.С.Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2007. – 256 с.

3. ЕГЭ-2012. Математика: типовые экзаменационные варианты: 10 вариантов/ под ред. А.Л.Семенова, И.В.Ященко. – М.: Национальное образование, 2011. – 112 с. – (ЕГЭ-2012. ФИПИ – школе).

\(\blacktriangleright\) Двугранный угол – угол, образованный двумя полуплоскостями и прямой \(a\) , которая является их общей границей.

\(\blacktriangleright\) Чтобы найти угол между плоскостями \(\xi\) и \(\pi\) , нужно найти линейный угол (причем острый или прямой ) двугранного угла, образованного плоскостями \(\xi\) и \(\pi\) :

Шаг 1: пусть \(\xi\cap\pi=a\) (линия пересечения плоскостей). В плоскости \(\xi\) отметим произвольную точку \(F\) и проведем \(FA\perp a\) ;

Шаг 2: проведем \(FG\perp \pi\) ;

Шаг 3: по ТТП (\(FG\) – перпендикуляр, \(FA\) –наклонная, \(AG\) – проекция) имеем: \(AG\perp a\) ;

Шаг 4: угол \(\angle FAG\) называется линейным углом двугранного угла, образованного плоскостями \(\xi\) и \(\pi\) .

Заметим, что треугольник \(AG\) – прямоугольный.
Заметим также, что плоскость \(AFG\) , построенная таким образом, перпендикулярна обеим плоскостям \(\xi\) и \(\pi\) . Следовательно, можно сказать по-другому: угол между плоскостями \(\xi\) и \(\pi\) - это угол между двумя пересекающимися прямыми \(c\in \xi\) и \(b\in\pi\) , образующими плоскость, перпендикулярную и \(\xi\) , и \(\pi\) .

Задание 1 #2875

Уровень задания: Сложнее ЕГЭ

Дана четырехугольная пирамида, все ребра которой равны, причем основание является квадратом. Найдите \(6\cos \alpha\) , где \(\alpha\) – угол между ее смежными боковыми гранями.

Пусть \(SABCD\) – данная пирамида (\(S\) – вершина), ребра которой равны \(a\) . Следовательно, все боковые грани представляют собой равные равносторонние треугольники. Найдем угол между гранями \(SAD\) и \(SCD\) .

Проведем \(CH\perp SD\) . Так как \(\triangle SAD=\triangle SCD\) , то \(AH\) также будет высотой в \(\triangle SAD\) . Следовательно, по определению \(\angle AHC=\alpha\) – линейный угол двугранного угла между гранями \(SAD\) и \(SCD\) .
Так как в основании лежит квадрат, то \(AC=a\sqrt2\) . Заметим также, что \(CH=AH\) – высота равностороннего треугольника со стороной \(a\) , следовательно, \(CH=AH=\frac{\sqrt3}2a\) .
Тогда по теореме косинусов из \(\triangle AHC\) : \[\cos \alpha=\dfrac{CH^2+AH^2-AC^2}{2CH\cdot AH}=-\dfrac13 \quad\Rightarrow\quad 6\cos\alpha=-2.\]

Ответ: -2

Задание 2 #2876

Уровень задания: Сложнее ЕГЭ

Плоскости \(\pi_1\) и \(\pi_2\) пересекаются под углом, косинус которого равен \(0,2\) . Плоскости \(\pi_2\) и \(\pi_3\) пересекаются под прямым углом, причем линия пересечения плоскостей \(\pi_1\) и \(\pi_2\) параллельна линии пересечения плоскостей \(\pi_2\) и \(\pi_3\) . Найдите синус угла между плоскостями \(\pi_1\) и \(\pi_3\) .

Пусть линия пересечения \(\pi_1\) и \(\pi_2\) – прямая \(a\) , линия пересечения \(\pi_2\) и \(\pi_3\) – прямая \(b\) , а линия пересечения \(\pi_3\) и \(\pi_1\) – прямая \(c\) . Так как \(a\parallel b\) , то \(c\parallel a\parallel b\) (по теореме из раздела теоретической справки “Геометрия в пространстве” \(\rightarrow\) “Введение в стереометрию, параллельность”).

Отметим точки \(A\in a, B\in b\) так, чтобы \(AB\perp a, AB\perp b\) (это возможно, так как \(a\parallel b\) ). Отметим \(C\in c\) так, чтобы \(BC\perp c\) , следовательно, \(BC\perp b\) . Тогда \(AC\perp c\) и \(AC\perp a\) .
Действительно, так как \(AB\perp b, BC\perp b\) , то \(b\) перпендикулярна плоскости \(ABC\) . Так как \(c\parallel a\parallel b\) , то прямые \(a\) и \(c\) тоже перпендикулярны плоскости \(ABC\) , а значит и любой прямой из этой плоскости, в частности, прямой \(AC\) .

Отсюда следует, что \(\angle BAC=\angle (\pi_1, \pi_2)\) , \(\angle ABC=\angle (\pi_2, \pi_3)=90^\circ\) , \(\angle BCA=\angle (\pi_3, \pi_1)\) . Получается, что \(\triangle ABC\) прямоугольный, а значит \[\sin \angle BCA=\cos \angle BAC=0,2.\]

Ответ: 0,2

Задание 3 #2877

Уровень задания: Сложнее ЕГЭ

Даны прямые \(a, b, c\) , пересекающиеся в одной точке, причем угол между любыми двумя из них равен \(60^\circ\) . Найдите \(\cos^{-1}\alpha\) , где \(\alpha\) – угол между плоскостью, образованной прямыми \(a\) и \(c\) , и плоскостью, образованной прямыми \(b\) и \(c\) . Ответ дайте в градусах.

Пусть прямые пересекаются в точке \(O\) . Так как угол между любыми двумя их них равен \(60^\circ\) , то все три прямые не могут лежать в одной плоскости. Отметим на прямой \(a\) точку \(A\) и проведем \(AB\perp b\) и \(AC\perp c\) . Тогда \(\triangle AOB=\triangle AOC\) как прямоугольные по гипотенузе и острому углу. Следовательно, \(OB=OC\) и \(AB=AC\) .
Проведем \(AH\perp (BOC)\) . Тогда по теореме о трех перпендикулярах \(HC\perp c\) , \(HB\perp b\) . Так как \(AB=AC\) , то \(\triangle AHB=\triangle AHC\) как прямоугольные по гипотенузе и катету. Следовательно, \(HB=HC\) . Значит, \(OH\) – биссектриса угла \(BOC\) (так как точка \(H\) равноудалена от сторон угла).

Заметим, что таким образом мы к тому же построили линейный угол двугранного угла, образованного плоскостью, образованной прямыми \(a\) и \(c\) , и плоскостью, образованной прямыми \(b\) и \(c\) . Это угол \(ACH\) .

Найдем этот угол. Так как точку \(A\) мы выбирали произвольно, то пусть мы выбрали ее так, что \(OA=2\) . Тогда в прямоугольном \(\triangle AOC\) : \[\sin 60^\circ=\dfrac{AC}{OA} \quad\Rightarrow\quad AC=\sqrt3 \quad\Rightarrow\quad OC=\sqrt{OA^2-AC^2}=1.\] Так как \(OH\) – биссектриса, то \(\angle HOC=30^\circ\) , следовательно, в прямоугольном \(\triangle HOC\) : \[\mathrm{tg}\,30^\circ=\dfrac{HC}{OC}\quad\Rightarrow\quad HC=\dfrac1{\sqrt3}.\] Тогда из прямоугольного \(\triangle ACH\) : \[\cos\angle \alpha=\cos\angle ACH=\dfrac{HC}{AC}=\dfrac13 \quad\Rightarrow\quad \cos^{-1}\alpha=3.\]

Ответ: 3

Задание 4 #2910

Уровень задания: Сложнее ЕГЭ

Плоскости \(\pi_1\) и \(\pi_2\) пересекаются по прямой \(l\) , на которой лежат точки \(M\) и \(N\) . Отрезки \(MA\) и \(MB\) перпендикулярны прямой \(l\) и лежат в плоскостях \(\pi_1\) и \(\pi_2\) соответственно, причем \(MN = 15\) , \(AN = 39\) , \(BN = 17\) , \(AB = 40\) . Найдите \(3\cos\alpha\) , где \(\alpha\) – угол между плоскостями \(\pi_1\) и \(\pi_2\) .

Треугольник \(AMN\) прямоугольный, \(AN^2 = AM^2 + MN^2\) , откуда \ Треугольник \(BMN\) прямоугольный, \(BN^2 = BM^2 + MN^2\) , откуда \ Запишем для треугольника \(AMB\) теорему косинусов: \ Тогда \ Так как угол \(\alpha\) между плоскостями – это острый угол, а \(\angle AMB\) получился тупым, то \(\cos\alpha=\dfrac5{12}\) . Тогда \

Ответ: 1,25

Задание 5 #2911

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – параллелепипед, \(ABCD\) – квадрат со стороной \(a\) , точка \(M\) – основание перпендикуляра, опущенного из точки \(A_1\) на плоскость \((ABCD)\) , кроме того \(M\) – точка пересечения диагоналей квадрата \(ABCD\) . Известно, что \(A_1M = \dfrac{\sqrt{3}}{2}a\) . Найдите угол между плоскостями \((ABCD)\) и \((AA_1B_1B)\) . Ответ дайте в градусах.

Построим \(MN\) перпендикулярно \(AB\) как показано на рисунке.


Так как \(ABCD\) – квадрат со стороной \(a\) и \(MN\perp AB\) и \(BC\perp AB\) , то \(MN\parallel BC\) . Так как \(M\) – точка пересечения диагоналей квадрата, то \(M\) – середина \(AC\) , следовательно, \(MN\) – средняя линия и \(MN =\frac12BC= \frac{1}{2}a\) .
\(MN\) – проекция \(A_1N\) на плоскость \((ABCD)\) , причем \(MN\) перпендикулярен \(AB\) , тогда по теореме о трех перпендикулярах \(A_1N\) перпендикулярен \(AB\) и угол между плоскостями \((ABCD)\) и \((AA_1B_1B)\) есть \(\angle A_1NM\) .
\[\mathrm{tg}\, \angle A_1NM = \dfrac{A_1M}{NM} = \dfrac{\frac{\sqrt{3}}{2}a}{\frac{1}{2}a} = \sqrt{3}\qquad\Rightarrow\qquad\angle A_1NM = 60^{\circ}\]

Ответ: 60

Задание 6 #1854

Уровень задания: Сложнее ЕГЭ

В квадрате \(ABCD\) : \(O\) – точка пересечения диагоналей; \(S\) – не лежит в плоскости квадрата, \(SO \perp ABC\) . Найдите угол между плоскостями \(ASD\) и \(ABC\) , если \(SO = 5\) , а \(AB = 10\) .

Прямоугольные треугольники \(\triangle SAO\) и \(\triangle SDO\) равны по двум сторонам и углу между ними (\(SO \perp ABC\) \(\Rightarrow\) \(\angle SOA = \angle SOD = 90^\circ\) ; \(AO = DO\) , т.к. \(O\) – точка пересечения диагоналей квадрата, \(SO\) – общая сторона) \(\Rightarrow\) \(AS = SD\) \(\Rightarrow\) \(\triangle ASD\) – равнобедренный. Точка \(K\) – середина \(AD\) , тогда \(SK\) – высота в треугольнике \(\triangle ASD\) , а \(OK\) – высота в треугольнике \(AOD\) \(\Rightarrow\) плоскость \(SOK\) перпендикулярна плоскостям \(ASD\) и \(ABC\) \(\Rightarrow\) \(\angle SKO\) – линейный угол, равный искомому двугранному углу.


В \(\triangle SKO\) : \(OK = \frac{1}{2}\cdot AB = \frac{1}{2}\cdot 10 = 5 = SO\) \(\Rightarrow\) \(\triangle SOK\) – равнобедренный прямоугольный треугольник \(\Rightarrow\) \(\angle SKO = 45^\circ\) .

Ответ: 45

Задание 7 #1855

Уровень задания: Сложнее ЕГЭ

В квадрате \(ABCD\) : \(O\) – точка пересечения диагоналей; \(S\) – не лежит в плоскости квадрата, \(SO \perp ABC\) . Найдите угол между плоскостями \(ASD\) и \(BSC\) , если \(SO = 5\) , а \(AB = 10\) .

Прямоугольные треугольники \(\triangle SAO\) , \(\triangle SDO\) , \(\triangle SOB\) и \(\triangle SOC\) равны по двум сторонам и углу между ними (\(SO \perp ABC\) \(\Rightarrow\) \(\angle SOA = \angle SOD = \angle SOB = \angle SOC = 90^\circ\) ; \(AO = OD = OB = OC\) , т.к. \(O\) – точка пересечения диагоналей квадрата, \(SO\) – общая сторона) \(\Rightarrow\) \(AS = DS = BS = CS\) \(\Rightarrow\) \(\triangle ASD\) и \(\triangle BSC\) – равнобедренные. Точка \(K\) – середина \(AD\) , тогда \(SK\) – высота в треугольнике \(\triangle ASD\) , а \(OK\) – высота в треугольнике \(AOD\) \(\Rightarrow\) плоскость \(SOK\) перпендикулярна плоскости \(ASD\) . Точка \(L\) – середина \(BC\) , тогда \(SL\) – высота в треугольнике \(\triangle BSC\) , а \(OL\) – высота в треугольнике \(BOC\) \(\Rightarrow\) плоскость \(SOL\) (она же плоскость \(SOK\) ) перпендикулярна плоскости \(BSC\) . Таким образом получаем, что \(\angle KSL\) – линейный угол, равный искомому двугранному углу.


\(KL = KO + OL = 2\cdot OL = AB = 10\) \(\Rightarrow\) \(OL = 5\) ; \(SK = SL\) – высоты в равных равнобедренных треугольниках, которые можно найти по теореме Пифагора: \(SL^2 = SO^2 + OL^2 = 5^2 + 5^2 = 50\) . Можно заметить, что \(SK^2 + SL^2 = 50 + 50 = 100 = KL^2\) \(\Rightarrow\) для треугольника \(\triangle KSL\) выполняется обратная теорема Пифагора \(\Rightarrow\) \(\triangle KSL\) – прямоугольный треугольник \(\Rightarrow\) \(\angle KSL = 90^\circ\) .

Ответ: 90

Подготовка учащихся к сдаче ЕГЭ по математике, как правило, начинается с повторения основных формул, в том числе и тех, которые позволяют определить угол между плоскостями. Несмотря на то, что этот раздел геометрии достаточно подробно освещается в рамках школьной программы, многие выпускники нуждаются в повторении базового материала. Понимая, как найти угол между плоскостями, старшеклассники смогут оперативно вычислить правильный ответ в ходе решения задачи и рассчитывать на получение достойных баллов по итогам сдачи единого государственного экзамена.

Основные нюансы

    Чтобы вопрос, как найти двугранный угол, не вызывал затруднений, рекомендуем следовать алгоритму решения, который поможет справиться с заданиями ЕГЭ.

    Вначале необходимо определить прямую, по которой пересекаются плоскости.

    Затем на этой прямой нужно выбрать точку и провести к ней два перпендикуляра.

    Следующий шаг - нахождение тригонометрической функции двугранного угла, который образован перпендикулярами. Делать это удобнее всего при помощи получившегося треугольника, частью которого является угол.

    Ответом будет значение угла или его тригонометрической функции.

Подготовка к экзаменационному испытанию вместе со «Школково» - залог вашего успеха

В процессе занятий накануне сдачи ЕГЭ многие школьники сталкиваются с проблемой поиска определений и формул, которые позволяют вычислить угол между 2 плоскостями. Школьный учебник не всегда есть под рукой именно тогда, когда это необходимо. А чтобы найти нужные формулы и примеры их правильного применения, в том числе и для нахождения угла между плоскостями в Интернете в режиме онлайн, порой требуется потратить немало времени.

Математический портал «Школково» предлагает новый подход к подготовке к госэкзамену. Занятия на нашем сайте помогут ученикам определить наиболее сложные для себя разделы и восполнить пробелы в знаниях.

Мы подготовили и понятно изложили весь необходимый материал. Базовые определения и формулы представлены в разделе «Теоретическая справка».

Для того чтобы лучше усвоить материал, предлагаем также попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач различной степени сложности, например, на , представлена в разделе «Каталог». Все задания содержат подробный алгоритм нахождения правильного ответа. Перечень упражнений на сайте постоянно дополняется и обновляется.

Практикуясь в решении задач, в которых требуется найти угол между двумя плоскостями, учащиеся имеют возможность в онлайн-режиме сохранить любое задание в «Избранное». Благодаря этому они смогут вернуться к нему необходимое количество раз и обсудить ход его решения со школьным учителем или репетитором.








Задача 1. Основание прямой четырехугольной призмы АВСDА 1 В 1 С 1 D 1 – прямоугольник АВСD, в котором АВ = 5, AD = 11. Найти тангенс угла между плоскостью основания призмы и плоскостью, проходящей через середину ребра AD перпендикулярно прямой BD 1, если расстояние между прямыми АС и B 1 D 1 равно 12. Решение. Введем систему координат. В(0;0;0), А(5;0;0), С(0;11;0), D 1 (5;11;12) Координаты нормали к плоскости сечения: Координаты нормали к плоскости основания: – острый угол, то D A B C D1D1 A1A1 B1B1 C1C1 х у z N Угол между плоскостями Ответ: 0,5. Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 2. В основании треугольной пирамиды SABC лежит прямоугольный треугольник АВС. Угол А – прямой. АС = 8, ВС = 219. Высота пирамиды SA равна 6. На ребре АС взята точка М так, что АМ = 2. Через точку М, вершину В и точку N – середину ребра SC – проведена плоскость α. Найти двугранный угол, образованный плоскостью α и плоскостью основания пирамиды. A S x B C M N y z Решение. Введем систему координат. Тогда А (0;0;0), С (0;8;0), М (0;2;0), N (0;4;3), S (0;0;6), Нормаль к плоскости (АВС) вектор Нормаль к плоскости (ВМN) Угол между плоскостями Ответ: 60°. Уравнение плоскости (ВМN): Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 3. Основание четырехугольной пирамиды PABCD квадрат со стороной, равной 6, боковое ребро PD перпендикулярно плоскости основания и равно 6. Найдите угол между плоскостями (BDP) и (BCP). Решение. 1. Проведём медиану DF равнобедренного треугольника CDP (ВС = PD = 6) Значит DF PC. И из того, что BC (CDP), следует что DF BC, значит DF (PCB) A D C B P F 2. Так как AC DB и AC DP, то AC (BDP) 3. Таким образом, угол между плоскостями (BDP) и (BCP) находится из условия: Угол между плоскостями Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 3. Основание четырехугольной пирамиды PABCD квадрат со стороной, равной 6, боковое ребро PD перпендикулярно плоскости основания и равно 6. Найдите угол между плоскостями (BDP) и (BCP). Решение.4. Выберем систему координат. Координаты точек: 5. Тогда вектора будут иметь следующие координаты: 6. Вычисляя значения, находим:, значит A D C B P F z x y Угол между плоскостями Ответ: Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 4. В единичном кубе АВСDA 1 B 1 C 1 D 1 найдите угол между плоскостями (AD 1 E) и (D 1 FC), где точки E и F - середины ребер А 1 В 1 и В 1 С 1 соответственно. Решение:1.Введем прямоугольную систему координат и определим координаты точек: 2. Составим уравнение плоскости (AD 1 E): 3. Составим уравнение плоскости (D 1 FC): - нормальный вектор плоскости (AD 1 Е). - нормальный вектор плоскости (D 1 FС). Угол между плоскостями х у z Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 4. В единичном кубе АВСDA 1 B 1 C 1 D 1 найдите угол между плоскостями (AD 1 E) и (D 1 FC), где точки E и F - середины ребер А 1 В 1 и В 1 С 1 соответственно. Решение: 4. Найдем косинус угла между плоскостями по формуле Ответ: Угол между плоскостями х у z Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 5. Отрезок, соединяющий центр основания правильной треугольной пирамиды с серединой бокового ребра, равен стороне основания. Найти угол между смежными боковыми гранями пирамиды. Решение: х у z 1.Введем прямоугольную систему координат и определим координаты точек А, В, С: К Пусть сторона основания равна 1. Для определенности рассмотрим грани SAC и SBC 2. Найдем координаты точки S: Е Угол между плоскостями Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 5. Отрезок, соединяющий центр основания правильной треугольной пирамиды с серединой бокового ребра, равен стороне основания. Найти угол между смежными боковыми гранями пирамиды. Решение: х у z К Е SO найдем из OSB: Угол между плоскостями Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 5. Отрезок, соединяющий центр основания правильной треугольной пирамиды с серединой бокового ребра, равен стороне основания. Найти угол между смежными боковыми гранями пирамиды. Решение: х у z К Е 3. Уравнение плоскости (SAC): - нормальный вектор плоскости (SAC). 4. Уравнение плоскости (SBC): - нормальный вектор плоскости (SВC). Угол между плоскостями Ненашева Н.Г. учитель математики ГБОУ СОШ 985


Задача 5. Отрезок, соединяющий центр основания правильной треугольной пирамиды с серединой бокового ребра, равен стороне основания. Найти угол между смежными боковыми гранями пирамиды. Решение: х у z К Е 5. Найдем косинус угла между плоскостями по формуле Ответ: Угол между плоскостями Ненашева Н.Г. учитель математики ГБОУ СОШ 985