Ядерный распад и синтез. Революция уже близко: ядерный синтез превращается в реальность

– это процесс, в ходе которого два атомных ядра объединяются, формируя тяжелее ядро. Обычно этот процесс сопровождается выделением энергии. Ядерный синтез является источником энергии в звездах и водородной бомбе.
Для сближения атомных ядер на расстояние, достаточное для того, чтобы произошла ядерная реакция, даже для самого легкого элемента, водорода, нужна очень значительное количество энергии. Но, в случае легких ядер, в результате объединения двух ядер с образованием более тяжелого ядра выделяется значительно больше энергии, чем уходит на преодоление кулоновского отталкивания между ними. Благодаря этому ядерный синтез – очень перспективный источник энергии и является одним из основных направлений исследования современной науки.
Количество энергии, выделяемой в большинстве ядерных реакций намного больше, чем в химических реакциях, так как энергия связи нуклонов в ядре значительно больше, чем энергии связи электронов в атоме. Например, энергия ионизации, которая получается при связывании электрона с протоном с образованием атома водорода, составляет 13.6 электрон-вольт – меньше, чем одну миллионную от 17 МэВ, выделяющиеся при реакции дейтерия с тритием, которая описана ниже.
В атомном ядре действуют два типа взаимодействия: сильное взаимодействие, удерживающее протоны и нейтроны вместе и значительно слабее электростатическое отталкивание между одинаково заряженными протонами ядра, пытается разорвать ядро. Сильное взаимодействие проявляется лишь на очень коротких расстояниях между протонами и нейтронами, непосредственно граничащих друг с другом. Это также означает, что протоны и нейтроны на поверхности ядра содержатся слабее, чем протоны и нейтроны внутри ядра. Сила электростатического отталкивания взамен действует на любых расстояниях и является обратно пропорциональной квадрату расстояния между зарядами, то есть каждый протон в ядре взаимодействует с каждым другим протоном в ядре. Это приводит к тому, что с увеличением размера ядра силы, удерживающие ядро возрастают до определенного атомного номера (атом железа), а затем начинают ослабевать. Начиная с урана энергия связи становится отрицательной и ядра тяжелых элементов становятся нестабильными.
Таким образом для осуществления реакции ядерного синтеза необходимо затратить определенную энергию на преодоление силы электростатического отталкивания между двумя атомными ядрами и свести их на расстояние, где начинает проявляться сильное взаимодействие. Энергия, необходимая для преодоления силы электростатического отталкивания, называется кулоновским барьером (Coulomb barrier).
Кулоновский барьер низкий для изотопов водорода, поскольку они имеют в ядре только один протон. Для DT смеси результирующий энергетический барьер составляет 0.1 МэВ. Для сравнения, чтобы убрать электрон с атома водорода требуется всего 13 эВ, что в 7500 раз меньше. Когда реакция синтеза завершается, новое ядро переходит на более низкий энергетический уровень и выделяет дополнительную энергию, излучая нейтрон с энергией 17.59 MeV, что существенно больше, чем нужно для запуска реакции. То есть реакция DT синтеза очень экзотермической и является источником энергии.
Если ядра является частью плазмы вблизи состояния теплового равновесия, реакция синтеза называется термоядерным синтезом. Поскольку температура является мерой средней кинетической энергии частиц, нагрев плазму можно предоставить ядрам достану энергию для преодоления барьера в 0.1 MэВ. Переведя эВ в Кельвина получим температуру свыше 1 ГК, что является чрезвычайно высокой температурой.
Есть однако два явления, которые позволяют снизить требуемую температуру реакции. Во-первых, температура отражающий среднюю кинетическую энергию, т.е. даже при низких температурах, чем эквивалент 0.1 МэВ, часть ядер будет иметь энергию существенно выше 0.1 МэВ, остальные будут иметь энергию существенно ниже. Во-вторых, следует учесть явление квантового туннелирования, когда ядра преодолевают барьер Кулона, имея недостаточно энергии. Это позволяет получить (медленные) реакции синтеза при низких температурах.
Важным для понимания реакции синтеза является понятие поперечного сечения реакции?: меры вероятности реакции синтеза как функции относительной скорости двух взаимодействующих ядер. Для термоядерной реакции синтеза удобнее рассматривать среднее значение распределения произведения поперечного сечения на скорость ядра . Используя его, можно записать скорость реакции (слияние ядер на объем на время) как

Где n 1 и n 2 это плотность реагентов. возрастает от нуля при комнатной температуре до значительной величины уже при температурах }