Живая клетка. Потрясающее устройство живой клетки

Исторические открытия

1609 - изготовлен первый микроскоп (Г. Галилей)

1665 - обнаружена клеточная структура пробковой ткани (Р. Гук)

1674 - открыты бактерии и простейшие (А. Левенгук)

1676 - описаны пластиды и хроматофоры (А. Левенгук)

1831 - открыто клеточное ядро (Р. Броун)

1839 - сформулирована клеточная теория (Т. Шванн, М. Шлейден)

1858- сформулировано положение "Каждая клетка из клетки" (Р. Вирхов)

1873 - открыты хромосомы (Ф. Шнейдер)

1892 - открыты вирусы (Д. И. Ивановский)

1931 - сконструирован электронный микроскоп (Е. Руске, М.Кноль)

1945 - открыта эндоплазматическая сеть (К. Портер)

1955 - открыты рибосомы (Дж. Палладе)



Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты

Клетка (лат."цкллюла" и греч. "цитос") - элементарная жи
вая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами - цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать на: двухмембраные - митохондрии и пластиды; и одномембранные - эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные - рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур - хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.

КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории - немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. с формулировал следующие положения:

  1. все организмы растений и животных состоят из клеток
  2. каждая клетка функционирует независимо от других, но вместе со всеми
  3. все клетки возникают из безструктурного вещества неживой материи.
Позднее Р. Вирхов (1858) внес существенное уточнение в последнее положение теории:
4. все клетки возникают только из клеток путем их деления.

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:

  1. клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
  2. новые клетки образуются путем деления от ранее существовавших
  3. клетка является микроскопическо й живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
  4. в клетке осуществляются:
  • метаболизм - обмен веществ;
  • обратимые физиологические процессы - дыхание, поступление и выделение веществ, раздражимость, движение;
  • необратимые процессы - рост и развитие.
5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение многоклеточного организма - следствие жизнедеятельности одной или нескольких клеток.


Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство - дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)

Эукароты (ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.

Особенности строения прокариотической и эукариотической клетки.

Признак
прокариоты
эукариоты
1 особенности строения
Наличие ядра
обособленного ядра нет
морфологически обособленное ядро, отделенное от цитоплазмы двойной мембраной
Число хромосом и их строение
у бактерий - одна кольцевая хромосома, прикрепленная к мезосоме - двухцепочечная ДНК не связанная с белками- гистонами. У цианобактерий - несколько хромосом в центре цитоплазмы
Определенное для каждого вида. Хромосомы линейные, двухцепочная ДНК связана с белками-гистонами
Плазмиды

Наличие ядрышка

имеются

отсутствуют
имеются у митохондрий и пластид

Имеются

Рибосомы мельче чем у эукариотов. Распределены по цитоплазме. Обычно свободные, но могут быть связаны с мембранными структурами. Составляют до 40% массы клетки
крупные, находятся в цитоплазме в свободном состоянии или связаны с мембранами эндоплазматического ретикулюма. В пластидах и митохондриях тоже содержатся рибосомы.
Одномембранны замкнутые органеллы
отсутствуют. их функции выполняют выросты клеточной мембраны
Многочисленны: эндоплазматический ретикулюм, аппарат Гольджи, вакуоли, лизосомы т.д.
Двухмембранные органеллы
Отсут ств уют
Митохондрии - у всех эукариотов; пластиды - у растений
Клеточный центр
Отсутствует
Имеется в клетках животных, грибов; у растений - в клетках водорослей и мхов
Мезосома Имеется у бактерий. Участвует в деление клетки и метаболизме.
Отсутствует
Клеточная стенка
У бактерий содержит муреин, у цианобактерий - целлюлозу, пектиновые вещества, немного муреина
У растений - целлюлозная, у грибов - хитиновая, у животных клеток клеточной стенки нет
Капсула или слизистый слой
Имеется у некоторых бактерий Отсутствует
Жгутики простого строения, не содержат микротрубочек. Диаметр 20 нм
Сложного строения, содержат микротрубочки (подобные микротрубочкам центриолей) Диаметр 200 нм
Размер клеток
Диаметр 0,5 - 5 мкм Диаметр обычно до 50мкм. Объем может превышать объем прокариотической клетки более чем в тысячу раз.
2. Особенности жизнедеятельности клетки
Движение цитоплазмы
Отсутствует
Наблюдается часто
Аэробное клеточное дыхание
У бактерий - в мезосомах; у цианобактерий - на цитоплазматических мембранах
Происходит в митохондриях
Фотосинтез Хлоропластов нет. Происходит на мембранах, не имеющих специфические формы
В хлоропластах, содержащих специальные мембраны, собранные в граны
Фагоцитоз и пиноцитоз
Отсутствует (невозможен из - за наичия жесткой клеточной стенки)
Свойствен клеткам животных, у растений и грибов отсутствует
Спорообразование Часть представителей способна образовывать споры из клетки. Они предназначены только для перенесения неблагоприятных условий среды, поскольку имеют толстую стенку
Спорообразование свойственно растениям и грибам. Споры предназначены для размножения
Способы деления клетки
Равновеликое бинарное поперечное деление, редко - почкование (почкующиеся бактерии). Митоз и мейоз отсутствуют
Митоз, мейоз, амитоз


Тема: Строение и функции клетки



Растительная клетка: Животная клетка :


Строение клетки. Структурная система цитоплазмы

Органеллы Строение
Функции
Наружная клеточная мембрана
ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами - порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы.
изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.
Эндоплазматичкская сеть ЭПС

Ультрамикроскопическая система мембран, об разующих трубочки, канальцы, цистерны пузырьки . Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их.
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ
Митохондрии

Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя - обра зует различной формы выросты - кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением.
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит расщеплении органических веществ с освобождением энергии, которая идет на синтез АТФ (на кристах)
Рибосомы

Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы - в цитоплазме Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка - первичная структура молекулы белка.
Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют в хлоропласты. Образуются из пропластид.
Аппарат Гольджи (диктиосома)


микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса: строительный и секреторный наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки.
Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Вн утренняя мембрана образует систему двухслойных пластин - тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты - хлорофилл и каротиноиды. В белково - липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая.
Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла органические вещества - углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению.
Хромопласты


Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму крис таллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых - опылителей. В осенних листьях и зрелых плодах, отделяющихся от растения, содержатся кристаллические каротиноиды - конечные продукты обмена
Лизосомы

Микроскопические одномембраные органеллы округлой формы. их число зависит от жизнедеятельности клетки и ее физиологиче ского состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков

Переваривание пищи, попавшей в животную клетку при фагоцитозе. защитная функция. в клетках любых организмов осуществляют автолиз(саморастворение органелл), особенно в условиях пищегого или кислородного голодания. у растений органеллы растворяются при образовании пробковой ткани, сосудов, древесины, волокон.

Клеточный центр
(Центросома)


Ультромикроскопическая органелла немембраного с троения. состоит из двух центриолей. каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу.
Принимает участие в деление клеток животных и низших растений. в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.
Органоиды движения

реснички - многочисленные цитоплазматические выросты на поверхности мембраны

жгутики - еди

ничные цитоплазматические выросты на поверхности клетки

ложные ножки (псевдоподии)- амебовидные выступы цитоплазмы



миофибриллы - тонкие нити длиной 1 см и более

цитоплазма осуществляющая струйчатое и круговое движение

удаление частичек пыли. передвижение

передвижение

образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных.

служат для сокращения мышечных волокон

перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя.

Клетка - элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии (англ. Cell biology).

Строение клеток Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими. Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам. Живое содержимое клетки - протопласт - отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток - митохондрии и пластиды.

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ - хорошо, полностью и κάρῠον - ядро, орех) - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Клеточная мембрана Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки. Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Головы молекул гидрофильные, т.е. обладают сродством к воде, а их углеводородные хвосты гидрофобны. Поэтому при смешивании с водой липиды образуют на ее поверхности пленку, аналогичную пленке масла; при этом все их молекулы ориентированы одинаково: головы молекул - в воде, а углеводородные хвосты - над ее поверхностью. В клеточной мембране два таких слоя, и в каждом из них головы молекул обращены наружу, а хвосты - внутрь мембраны, один к другому, не соприкасаясь таким образом с водой. Толщина такой мембраны ок. 7 нм. Кроме основных липидных компонентов, она содержит крупные белковые молекулы, которые способны «плавать» в липидном бислое и расположены так, что одна их сторона обращена внутрь клетки, а другая соприкасается с внешней средой. Некоторые белки находятся только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой.

Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. Поскольку мембрана физически в какой-то мере похожа на масло, вещества, растворимые в масле или в органических растворителях, например эфир, легко проходят сквозь нее. То же относится и к таким газам, как кислород и диоксид углерода. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной. Например, в крови концентрация ионов натрия высокая, а ионов калия - низкая, тогда как во внутриклеточной жидкости эти ионы присутствуют в обратном соотношении. Аналогичная ситуация характерна и для многих других химических соединений. Очевидно, что клетка тем не менее не может быть полностью изолирована от окружающей среды, так как должна получать вещества, необходимые для метаболизма, и избавляться от его конечных продуктов. К тому же липидный бислой не является полностью непроницаемым даже для водорастворимых веществ, а пронизывающие его т.н. «каналообразующие» белки создают поры, или каналы, которые могут открываться и закрываться (в зависимости от изменения конформации белка) и в открытом состоянии проводят определенные иона (Na+, K+, Ca2+) по градиенту концентрации. Следовательно, разница концентраций внутри клетки и снаружи не может поддерживаться исключительно за счет малой проницаемости мембраны. На самом деле в ней имеются белки, выполняющие функцию молекулярного «насоса»: они транспортируют некоторые вещества как внутрь клетки, так и из нее, работая против градиента концентрации. В результате, когда концентрация, например, аминокислот внутри клетки высокая, а снаружи низкая, аминокислоты могут тем не менее поступать из внешней среды во внутреннюю. Такой перенос называется активным транспортом, и на него затрачивается энергия, поставляемая метаболизмом. Мембранные насосы высокоспецифичны: каждый из них способен транспортировать либо только ионы определенного металла, либо аминокислоту, либо сахар. Специфичны также и мембранные ионные каналы. Такая избирательная проницаемость физиологически очень важна, и ее отсутствие - первое свидетельство гибели клетки. Это легко проиллюстрировать на примере свеклы. Если живой корень свеклы погрузить в холодную воду, то он сохраняет свой пигмент; если же свеклу кипятить, то клетки погибают, становятся легко проницаемыми и теряют пигмент, который и окрашивает воду в красный цвет. Крупные молекулы типа белковых клетка может «заглатывать». Под влиянием некоторых белков, если они присутствуют в жидкости, окружающей клетку, в клеточной мембране возникает впячивание, которое затем смыкается, образуя пузырек - небольшую вакуоль, содержащую воду и белковые молекулы; после этого мембрана вокруг вакуоли разрывается, и содержимое попадает внутрь клетки. Такой процесс называется пиноцитозом (буквально «питье клетки»), или эндоцитозом. Более крупные частички, например частички пищи, могут поглощаться аналогичным образом в ходе т.н. фагоцитоза. Как правило, вакуоль, образующаяся при фагоцитозе, крупнее, и пища переваривается ферментами лизосом внутри вакуоли до разрыва окружающей ее мембраны. Такой тип питания характерен для простейших, например для амеб, поедающих бактерий. Однако способность к фагоцитозу свойственна и клеткам кишечника низших животных, и фагоцитам - одному из видов белых кровяных клеток (лейкоцитов) позвоночных. В последнем случае смысл этого процесса заключается не в питании самих фагоцитов, а в разрушении ими бактерий, вирусов и другого инородного материала, вредного для организма. Функции вакуолей могут быть и другими. Например, простейшие, живущие в пресной воде, испытывают постоянный осмотический приток воды, так как концентрация солей внутри клетки гораздо выше, чем снаружи. Они способны выделять воду в специальную экскретирующую (сократительную) вакуоль, которая периодически выталкивает свое содержимое наружу. В растительных клетках часто имеется одна большая центральная вакуоль, занимающая почти всю клетку; цитоплазма при этом образует лишь очень тонкий слой между клеточной стенкой и вакуолью. Одна из функций такой вакуоли - накопление воды, позволяющее клетке быстро увеличиваться в размерах. Эта способность особенно необходима в период, когда растительные ткани растут и образуют волокнистые структуры. В тканях в местах плотного соединения клеток их мембраны содержат многочисленные поры, образованные пронизывающими мембрану белками - т.н. коннексонами. Поры прилежащих клеток располагаются друг против друга, так что низкомолекулярные вещества могут перегодить из клетки в клетку - эта химическая система коммуникации координирует их жизнедеятельность. Один из примеров такой координации - наблюдаемое во многих тканях более или менее синхронное деление соседних клеток.

Цитоплазма

В цитоплазме имеются внутренние мембраны, сходные с наружной и образующие органеллы различного типа. Эти мембраны можно рассматривать как складки наружной мембраны; иногда внутренние мембраны составляют единое целое с наружной, но часто внутренняя складка отшнуровывается, и контакт с наружной мембраной прерывается. Однако даже в случае сохранения контакта внутренняя и наружная мембраны не всегда химически идентичны. В особенности различается состав мембранных белков в разных клеточных органеллах.

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Аппарат Гольджи

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен - цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

Ядро

Ядро окружено двойной мембраной. Очень узкое (порядка 40 нм) пространство между двумя мембранами называется перинуклеарным. Мембраны ядра переходят в мембраны эндоплазматического ретикулума, а перинуклеарное пространство открывается в ретикулярное. Обычно ядерная мембрана имеет очень узкие поры. По-видимому, через них осуществляется перенос крупных молекул, таких, как информационная РНК, которая синтезируется на ДНК, а затем поступает в цитоплазму. Основная часть генетического материала находится в хромосомах клеточного ядра. Хромосомы состоят из длинных цепей двуспиральной ДНК, к которой прикрепляются основные (т.е. обладающие щелочными свойствами) белки. Иногда в хромосомах имеется несколько идентичных цепей ДНК, лежащих рядом друг с другом, - такие хромосомы называются политенными (многонитчатыми). Число хромосом у разных видов неодинаково. Диплоидные клетки тела человека содержат 46 хромосом, или 23 пары. В неделящейся клетке хромосомы прикреплены в одной или нескольких точках к ядерной мембране. В обычном неспирализованном состоянии хромосомы настолько тонки, что не видны в световой микроскоп. На определенных локусах (участках) одной или нескольких хромосом формируется присутствующее в ядрах большинства клеток плотное тельце - т.н. ядрышко. В ядрышках происходит синтез и накопление РНК, используемой для построения рибосом, а также некоторых других типов РНК.

Лизосомы

Лизосомы - это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы, в частности белковые. Из-за своего разрушительного действия эти ферменты как бы «заперты» в лизосомах и высвобождаются только по мере надобности. Так, при внутриклеточном пищеварении ферменты выделяются из лизосом в пищеварительные вакуоли. Лизосомы бывают необходимы и для разрушения клеток; например, во время превращения головастика во взрослую лягушку высвобождение лизосомных ферментов обеспечивает разрушение клеток хвоста. В данном случае это нормально и полезно для организма, но иногда такое разрушение клеток носит патологический характер. Например, при вдыхании асбестовой пыли она может проникнуть в клетки легких, и тогда происходит разрыв лизосом, разрушение клеток и развивается легочное заболевание.

Цитоскелет

К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3. Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки. Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей. Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.

Митохондрии

Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ - универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счёт энзиматических систем митохондрий. Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов (97) из изученных организмов имеет простейшее Reclinomonas americana.

Химический состав клетки

Обычно 70-80 % массы клетки составляет вода, в которой растворены разнообразные соли и низкомолекулярные органические соединения. Наиболее характерные компоненты клетки - белки и нуклеиновые кислоты. Некоторые белки являются структурными компонентами клетки, другие - ферментами, т.е. катализаторами, определяющими скорость и направление протекающих в клетках химических реакций. Нуклеиновые кислоты служат носителями наследственной информации, которая реализуется в процессе внутриклеточного синтеза белков. Часто клетки содержат некоторое количество запасных веществ, служащих пищевым резервом. Растительные клетки в основном запасают крахмал - полимерную форму углеводов. В клетках печени и мышц запасается другой углеводный полимер - гликоген. К часто запасаемым продуктам относится также жир, хотя некоторые жиры выполняют иную функцию, а именно служат важнейшими структурными компонентами. Белки в клетках (за исключением клеток семян) обычно не запасаются. Описать типичный состав клетки не представляется возможным прежде всего потому, что существуют большие различия в количестве запасаемых продуктов и воды. В клетках печени содержится, например, 70% воды, 17% белков, 5% жиров, 2% углеводов и 0,1% нуклеиновых кислот; оставшиеся 6% приходятся на соли и низкомолекулярные органические соединения, в частности аминокислоты. Растительные клетки обычно содержат меньше белков, значительно больше углеводов и несколько больше воды; исключение составляют клетки, находящиеся в состоянии покоя. Покоящаяся клетка пшеничного зерна, являющегося источником питательных веществ для зародыша, содержит ок. 12% белков (в основном это запасаемый белок), 2% жиров и 72% углеводов. Количество воды достигает нормального уровня (70-80%) только в начале прорастания зерна.

Методы изучения клетки

Световой микроскоп .

В изучении клеточной формы и структуры первым инструментом был световой микроскоп. Его разрешающая способность ограничена размерами, сравнимыми с длиной световой волны (0,4-0,7 мкм для видимого света). Однако многие элементы клеточной структуры значительно меньше по размерам. Другая трудность состоит в том, что большинство клеточных компонентов прозрачны и коэффициент преломления у них почти такой же, как у воды. Для улучшения видимости часто используют красители, имеющие разное сродство к различным клеточным компонентам. Окрашивание применяют также для изучения химии клетки. Например, некоторые красители связываются преимущественно с нуклеиновыми кислотами и тем самым выявляют их локализацию в клетке. Небольшая часть красителей - их называют прижизненными - может быть использована для окраски живых клеток, но обычно клетки должны быть предварительно зафиксированы (с помощью веществ, коагулирующих белок) и только после этого могут быть окрашены. Перед проведением исследования клетки или кусочки ткани обычно заливают в парафин или пластик и затем режут на очень тонкие срезы с помощью микротома. Такой метод широко используется в клинических лабораториях для выявления опухолевых клеток. Помимо обычной световой микроскопии разработаны и другие оптические методы изучения клетки: флуоресцентная микроскопия, фазово-контрастная микроскопия, спектроскопия и рентгеноструктурный анализ.

Электронный микроскоп .

Электронный микроскоп имеет разрешающую способность ок. 1-2 нм. Этого достаточно для изучения крупных белковых молекул. Обычно необходимо окрашивание и контрастирование объекта солями металлов или металлами. По этой причине, а также потому, что объекты исследуются в вакууме, с помощью электронного микроскопа можно изучать только убитые клетки.

Если добавить в среду радиоактивный изотоп, поглощаемый клетками в процессе метаболизма, то его внутриклеточную локализацию можно затем выявить с помощью авторадиографии. При использовании этого метода тонкие срезы клеток помещают на пленку. Пленка темнеет под теми местами, где находятся радиоактивные изотопы.

Центрифугирование .

Для биохимического изучения клеточных компонентов клетки необходимо разрушить - механически, химически или ультразвуком. Высвобожденные компоненты оказываются в жидкости во взвешенном состоянии и могут быть выделены и очищены с помощью центрифугирования (чаще всего - в градиенте плотности). Обычно такие очищенные компоненты сохраняют высокую биохимическую активность.

Клеточные культуры .

Некоторые ткани удается разделить на отдельные клетки так, что клетки при этом остаются живыми и часто способны к размножению. Этот факт окончательно подтверждает представление о клетке как единице живого. Губку, примитивный многоклеточный организм, можно разделить на клетки путем протирания сквозь сито. Через некоторое время эти клетки вновь соединяются и образуют губку. Эмбриональные ткани животных можно заставить диссоциировать с помощью ферментов или другими способами, ослабляющими связи между клетками. Американский эмбриолог Р.Гаррисон (1879-1959) первым показал, что эмбриональные и даже некоторые зрелые клетки могут расти и размножаться вне тела в подходящей среде. Эта техника, называемая культивированием клеток, была доведена до совершенства французским биологом А.Каррелем (1873-1959). Растительные клетки тоже можно выращивать в культуре, однако по сравнению с животными клетками они образуют большие скопления и прочнее прикрепляются друг к другу, поэтому в процессе роста культуры образуются ткани, а не отдельные клетки. В клеточной культуре из отдельной клетки можно вырастить целое взрослое растение, например морковь.

Микрохирургия .

С помощью микроманипулятора отдельные части клетки можно удалять, добавлять или каким-то образом видоизменять. Крупную клетку амебы удается разделить на три основных компонента - клеточную мембрану, цитоплазму и ядро, а затем эти компоненты можно вновь собрать и получить живую клетку. Таким путем могут быть получены искусственные клетки, состоящие из компонентов разных видов амеб. Если принять во внимание, что некоторые клеточные компоненты представляется возможным синтезировать искусственно, то опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию в лабораторных условиях новых форм жизни. Поскольку каждый организм развивается из одной единственной клетки, метод получения искусственных клеток в принципе позволяет конструировать организмы заданного типа, если при этом использовать компоненты, несколько отличающиеся от тех, которые имеются у ныне существующих клеток. В действительности, однако, полного синтеза всех клеточных компонентов не требуется. Структура большинства, если не всех компонентов клетки, определяется нуклеиновыми кислотами. Таким образом, проблема создания новых организмов сводится к синтезу новых типов нуклеиновых кислот и замене ими природных нуклеиновых кислот в определенных клетках.

Слияние клеток .

Другой тип искусственных клеток может быть получен в результате слияния клеток одного или разных видов. Чтобы добиться слияния, клетки подвергают воздействию вирусных ферментов; при этом наружные поверхности двух клеток склеиваются вместе, а мембрана между ними разрушается, и образуется клетка, в которой два набора хромосом заключены в одном ядре. Можно слить клетки разных типов или на разных стадиях деления. Используя этот метод, удалось получить гибридные клетки мыши и цыпленка, человека и мыши, человека и жабы. Такие клетки являются гибридными лишь изначально, а после многочисленных клеточных делений теряют большинство хромосом либо одного, либо другого вида. Конечный продукт становится, например, по существу клеткой мыши, где человеческие гены отсутствуют или имеются лишь в незначительном количестве. Особый интерес представляет слияние нормальных и злокачественных клеток. В некоторых случаях гибриды становятся злокачественными, в других нет, т.е. оба свойства могут проявляться и как доминантные, и как рецессивные. Этот результат не является неожиданным, так как злокачественность может вызываться различными факторами и имеет сложный механизм.

Клетка (cellula) представляет живую систему, состоящую из двух частей - цитоплазмы и ядра, являющихся основой строения, развития и жизнедеятельности всех животных и растительных организмов (рис. 5, 6). Клетки, объединенные с внеклеточными структурами, формируют ткани. Контроль и взаимоотношение клеток, находящихся в составе тканей, устанавливают нервная система и гормоны. Адгезия (слипание) клеток обеспечивает структурное и функциональное единство тканей. Развитие клеточной структуры в филогенезе имело большое значение в эволюции органической жизни. Благодаря клеточной структуре возможны размножение, рост и передача наследственных свойств новым организмам, восстановление органов и тканей (регенерация). Клетки каждой ткани имеют различную форму: пластинок, кубиков, цилиндров, шариков, веретен или вообще переходят без четких границ друг в друга (синцитий). Эти формы чаще изображены из клеток, уплотненных (фиксированных) химическими веществами. В действительности живые клетки имеют неровные контуры с многочисленными выпячиваниями и отростками, которые представляют весьма динамичные образования.

5. Схема субмикроскопического строения фиксированной клетки. 1 - оболочка клетки; 2 - гиалоплазма; 3 - внутриклеточные нити; 4 - липоидные гранулы; 5 - эргастоплазма и в ней: 6 - альфа-цитомембраны; 7- рибосомы; 8 - ядра; 9 - поры в ядерной оболочке; 10 - ядерная оболочка; 11 - ядрышко; 12 - внутриклеточный сетчатый аппарат; 13 - митохондрий; 14-центриоли.

6. Схема строения фиксированной клетки при световой микроскопии. 1 - оболочка клетки; 2 - цитоплазма; 3 - внутриклеточный сетчатый аппарат; 4 - клеточный центр; 5 - митохондрии; 6 - белковые гранулы; 7 - ядро с оболочкой; 8 - глыбки хроматина; 9 - ядрышко;10 - вакуоли; 11 - липоидные гранулы.

Клетка состоит из ядра и цитоплазмы. Ядро (nucleus) имеет шарообразную овоидную форму и содержит хромосомы, которые хорошо выражены в фазе деления клеток и не видны в интерфазных ядрах. В состав ядра входят: а) хроматин, имеющий форму глыбок или нитей. Ядерная дезоксирибонуклеиновая кислота (ДНК) локализуется в хроматине и связана только с хромосомами, которые в период митотического деления спирально скручены в хромонемы. В интерфазный период хромосомы расправляются и тончайшие их нити видны только при электронной микроскопии; б) кариолимфа (ядерный сок) - среда, где локализуются разбухшие деспирализованные хромосомы, ядрышки и глобулины; в) ядрышки, синтезирующие рибонуклеиновую кислоту (РНК), которая через поры ядерной оболочки проникает в цитоплазму. Они состоят из гранул рибонуклеопротеида и РНК. Ядрышки исчезают в период деления ядра. В клетках, активно синтезирующих белок, имеются крупные ядрышки с большим содержанием РНК; г) ядерная оболочка, состоящая из двух мембран, пронизанных сквозными отверстиями, через которые кариолимфа сообщается с цитоплазмой.

Большей частью в клетках имеется одно ядро, кроме зрелых эритроцитов, где ядро отсутствует; встречаются клетки с двумя, тремя и сотнями ядер. Функция ядра более активна в период между делениями клетки. Химическая структура ядра состоит из ДНК, РНК, солей Mg, Na, К, Са, предшественников нуклеиновых кислот-нуклеотидов и ядерных белков: а) гистоны, связанные с ДНК; б) глобулины, соединенные с ядерными ферментами нуклеинового обмена и анаэробного гликолиза; в) негистоновые белки, связанные с РНК; г) труднорастворимые белки.

Цитоплазма представляет основу, где располагаются различные органоиды и включения, находящиеся в основном веществе клетки, представляющем бесструктурную глобулярную гиалоплазму.

Органоиды . Микротрубочки представляют трехслойные образования, выполняющие функцию опорных элементов для других органоидов и включений клетки. Рибосомы являются частицами белка, РНК, солей Mg и полиаминов в виде гранул, свободных и прикрепленных к мембране эргастоплазматической сети. Рибосомы синтезируют белки. Эргастоплазматическая (эндоплазматическая) сеть состоит из вакуолизированных элементов разнообразной формы. К наружной мембране этой сети прикреплены гранулы рибосом. Сеть необычайно динамична, легко перестраивается при внешних воздействиях в сферические, мешковидные, пластинчатые образования. Эргастоплазматическая сеть участвует в синтезе протеинов и в проведении возбуждения внутри клетки. Комплекс Гольджи имеет сетевидное строение, располагаясь около ядра и окружая клеточный центр. Представляет собой уплощенные мешочки или цистерны, содержащие продукты секреции эргастоплазматического комплекса. Лизосомы - сферические частицы, содержащие около 12 гидролитических ферментов. Митохондрии имеют форму нитевидных образований, состоящих из двухслойных мембран. В центре митохондрии расположены кристы (гребни), являющиеся производными внутреннего слоя. Митохондрии участвуют в окислении веществ. Клеточный центр располагается около ядра и имеет форму цилиндрических трубочек, названных центриолями. В период митотического деления клеток центриоли ориентируют хромосомы по полюсам клетки. Специализированными структурами цитоплазмы являются микроворсинки, реснички, жгутики, миофибриллы, нейрофибриллы, тонофибриллы.

Включения . В процессе обмена веществ в клетке откладываются различные вещества типа белковых, липидных, углеводных, пигментных гранул.

Можно сказать, что живые организмы - это сложная система, выполняющая различные функции необходимые для нормальной жизнедеятельности. Они состоят из клеток. Поэтому, подразделяются на многоклеточные и одноклеточные. Именно клетка составляет основу любого организма, независимо от его структуры.

Одноклеточные организмы имеют только один У многоклеточных живых организмов представлены различные типы клеток, которые отличаются по своему функциональному значению. Изучением клетки занимается цитология, которую включает в себя наука биология.

Строение клетки практически одинаково для любого их типа. Они различаются по функциям, размерам и форме. Химический состав тоже типичен для всех клеток живых организмов. Клетка содержит главные молекулы: РНК, белки, ДНК и элементы полисахаридов и липидов. Почти на 80 процентов клетка состоит из воды. Кроме этого в ее состав входят сахара, нуклеотиды, аминокислоты и прочие продукты процессов, происходящих в клетке.

Строение клетки живого организма состоит из множества компонентов. Поверхность клетки составляет мембрана. Она позволяет обеспечить клетке проникновение только определенных веществ. Между клеткой и мембраной находится жидкое Именно мембрана является посредником в обменных процессах, происходящих между клеткой и межклеточной жидкостью.

Основным компонентом клетки является цитоплазма. Это вещество вязкой, полужидкой консистенции. В ней содержится органоиды, которые выполняют ряд функций. К ним относятся следующие компоненты: клеточный центр, лизосомы, ядро, митохондрии, эндоплазматическая сеть, рибосомы и комплекс Гольджи.Каждый из этих компонентов обязательно входит в строение клетки.

Вся цитоплазма состоит из множества канальцев и полостей, которые представляют собой эндоплазматическую сеть. Вся эта система синтезирует, накапливает и продвигает органические соединения, которые вырабатывает клетка. Эндоплазматическая сеть участвует и в синтезе белка.

Помимо нее в синтезе белка принимают участие рибосомы, которые содержат РНК и белок. Комплекс Гольджи влияет на образование лизосом и накапливает Это специальные полости с пузырьками на концах.

Клеточный центр содержит два тельца, участвующих в Клеточный центр расположен непосредственно возле ядра.

Так постепенно мы подобрались к главному компоненту в строение клетки - ядру. Это самая важная часть клетки. Оно содержит ядрышко, белки, жиры, углеводы и хромосомы. Вся внутренность ядра заполнена ядерным соком. Всю информацию о наследственности содержат клетки тела человека предусматривает наличие 46 хромосом. Половые клетки состоят из 23 хромосом.

В строение клеток входят и лизосомы. Они очищают клетку от отмерших частиц.
Клетки, кроме основных компонентов, содержат и некоторые соединения органического и неорганического характера. Как уже было сказано, клетка состоит на 80 процентов из воды. Еще одним неорганическим соединением, которое входит в ее состав, являются соли. Вода играет важную роль в жизнедеятельности клетки. Она является главным участникам химических реакций, в качестве переносчика веществ и вывода из клетки вредных соединений. Соли способствуют правильному распределению воды в структуре клетки.

Среди органических соединений присутствуют: водород, кислород, сера, железо, магний, цинк, азот, йод, фосфор. Они являются жизненно необходимыми для преобразования в сложные органические соединения.

Клетка - это основная составляющая любого живого организма. Ее структура - сложный механизм, в котором не должно быть ни каких сбоев. Иначе, это приведет к неизменным процессам.

Структурной единицей любого организма является клетка. Определение этой структуры впервые использовал когда изучал строение тканей под микроскопом. Сейчас ученые нашли большое количество различных типов клеток, которые встречаются в природе. Единственными организмами неклеточного строения являются вирусы.

Клетка: определение, строение

Клетка - это структурная и морфофункциональная единица всех живых организмов. Различают одноклеточные и многоклеточные организмы.

Большинство клеток имеют следующие структуры: покровный аппарат, ядро и цитоплазма с органеллами. Покровы могут быть представлены цитоплазматической мембраной и клеточной стенкой. Ядро и органеллы имеет только эукариотическая клетка, определение которой отличается от прокариотической.

Клетки многоклеточных организмов образуют ткани, которые, в свою очередь, являются составляющей органов и систем органов. Они бывают разных размеров и могут отличаться по форме и функциям. Различить эти мелкие структуры можно только с помощью микроскопа.

в биологии. Определение прокариотической клетки

Такие микроорганизмы, как бактерии, являются ярким примером прокариотических организмов. Этот тип клеток отличается простотой в строении, т. к. у бактерий отсутствует ядро и другие цитоплазматические органеллы. микроорганизмов заключена в специализированной структуре - нуклеоиде, а функции органелл выполняют мезосомы, которые образуются путем впячивания цитоплазматической мембраны внутрь клетки.

Какими еще особенностями обладает Определение гласит, что наличие ресничек и жгутиков также является характерным признаком бактерий. Этот дополнительный двигательный аппарат отличается у разных групп микроорганизмов: у кого-то только один жгутик, у кого-то их два и более. У инфузорий жгутиков нет, зато присутствуют реснички по всей периферии клетки.

Включения играют большую роль в жизни бактерий, т. к. прокариотические клетки не обладают органеллами, которые способны накапливать необходимые вещества. Включения находятся в цитоплазме и там же компактизируются. При необходимости бактерии могут использовать эти накопленные вещества для своих нужд, дабы поддерживать нормальную жизнедеятельность.

Эукариотическая клетка

Эволюционно более развиты по сравнению с клетками прокариот. Они имеют все типичные органеллы, а также ядро - центр хранения и передачи генетической информации.

Определение понятия "клетка" точно описывает строение эукариот. Каждая клетка покрыта цитоплазматической мембраной, которая представлена билипидным слоем и белками. Сверху располагается гликокаликс, который образован гликопротеидами и выполняет рецепторную функцию. У растительных клеток также выделяют клеточную стенку.

Цитоплазма эукариот представлена коллоидным раствором, в котором находятся органеллы, цитоскелет и различные включения. Среди органоидов выделяют эндоплазматическую сеть (гладкую и шероховатую), лизосомы, пероксисомы, митохондрии, а также пластиды растений. Цитоскелет представлен микротрубочками, микрофиламентами и промежуточными микрофиламентами. Эти структуры образуют каркас, а также участвуют в делении. Непосредственную роль в этом процессе играет центр, который имеет любая животная клетка. Определение, нахождение цитоскелета и клеточного центра в ее толще возможно только с использованием мощного современного микроскопа.

Ядро - это двумембранная структура, содержимое которого представлено кариолимфой. В ней находятся хромосомы, содержащие ДНК всей клетки. Ядро отвечает за транскрипцию генов организма, а также контролирует этапы деления при митозе, амитозе и мейозе.

Неклеточные формы жизни

Что такое клетка термина можно использовать при описании строения почти любого организма, однако здесь есть исключения. Так, вирусы являются основными представителями неклеточной формы жизни. Их организация довольно проста, т. к. вирусы - это инфекционные агенты, которые в своем составе содержат только два органических компонента: ДНК или РНК, а также белковую оболочку.

Бактерии также страдают от нападения вирусов, которые составляют группу бактериофагов. Их тело имеет форму додекаэдра, а «впрыскивание» нуклеиновой кислоты в бактериальную клетку происходит с помощью хвостового отростка, представленного сократительным чехлом, внутренним стержнем и базальной пластинкой.