Основные свойства клетки. Клетка: строение, функции, размножение, виды клеток

Клетки - строительный материал тела. Из них состоят ткани, железы, системы и, наконец, организм.

Клетки

Клетки бывают разных форм и размеров, но для всех из них есть общая схема строения.

Клетка состоит из протоплазмы, бесцветного, прозрачного желеподобного вещества, состоящего на 70% из воды и из разных органических и неорганических веществ. Большинство клеток состоят из трех основных частей: внешняя оболочка, называемая мембраной, центр - ядро и полужидкая прослойка - цитоплазма.

  1. Клеточная мембрана состоит из жиров и протеинов; она полупроницаема, т.е. пропускает такие вещества, как кислород и оксид углерода.
  2. Ядро состоит из особой протоплазмы, называемой нуклеоплазмой. Ядро часто называют «информационным центром» клетки, поскольку в нем содержится вся информация о росте, развитии и функционировании клетки в форме ДНК (дезоксирибонуклеиновая кислота). В ДНК содержится материал, необходимый для развития хромосом, которые несут наследственную информацию от материнской клетки к дочерней. В клетках человека 46 хромосом, по 23 от каждого родителя. Ядро окружено мембраной, которая отделяет его от других структур клетки.
  3. В цитоплазме находится множество структур, называемых оргаиеллами, или «маленькими органами», в число которых входят: митохондрии, рибосомы, аппарат Гольджи, лизосомы, эндоплазматическая сеть и центриоли:
  • Митохондрии - сферические, продолговатые структуры, которые часто именуют «энергетическими центрами», поскольку они обеспечивают клетку силой, необходимой для производства энергии.
  • Рибосомы - гранулярные образования, источник протеина, необходимого клетке для роста и восстановления.
  • Аппарат Гольджи состоит из 4-8 соединенных между собой мешочков, которые производят, сортируют и поставляют протеины в другие части клетки, для которых они являются источником энергии.
  • Лизосомы - сферические структуры, которые вырабатывают вещества для избавления от поврежденных или изношенных частей клетки. Они являются «очистителями» клетки.
  • Эндоплазматическая сеть - сеть каналов, по которым вещества транспортируются внутри клетки.
  • Центриоли - две тонкие цилиндрические структуры, расположенные под прямым углом. Они участвуют в формировании новых клеток.

Клетки не существуют самостоятельно; они работают в группах из подобных клеток - тканях.

Ткани

Эпителиальная ткань

Из эпителиальной ткани состоят стенки и покровы многих органов и сосудов; различают два ее типа: простая и сложная.

Простая эпителиальная ткань состоит из одного слоя клеток, которые бывают четырех видов:

  • Чешуйчатая: плоские клетки лежат шкалообразно, край к краю, в ряд, подобно кафельному полу. Чешуйчатый покров встречается у частей тела, которые мало подвержены износу и повреждению, например стенки альвеол легких в респираторной системе и стенки сердца, кровеносные и лимфатические сосуды в кровеносной системе.
  • Кубовидная: кубические клетки, расположенные в ряд, формируют стенки некоторых желез. Эта ткань пропускает жидкость в процессе секреции, например при выделении пота из потовой железы.
  • Столбчатая: ряд высоких клеток, которые формируют стенки многих органов пищеварительной и мочевыделительной систем. Среди столбчатых клеток - кубкообразные, которые производят водянистую жидкость - слизь.
  • Реснитчатая: одинарный слой чешуйчатых, кубовидных или столбчатых клеток, имеющих выступы, называемые ресничками. Все реснички непрерывно совершают волнообразные движения в одну сторону, что позволяет веществам, например слизи или ненужным субстанциям, продвигаться по ним. Из такой ткани сформированы стенки органов дыхательной системы и репродуктивных органов. 2. Сложная эпителиальная ткань состоит из множества слоев клеток и бывает двух основных видов.

Слоистая - множество слоев чешуйчатых, кубовидных или столбчатых клеток, из которых формируется защитный слой. Клетки либо сухие и затвердевшие, либо влажные и мягкие. В первом случае клетки ороговевшие, т.е. они высохли, и получился волокнистый протеин - кератин. Мягкие клетки - не ороговевшие. Примеры твердых клеток: верхний слой кожи, волосы и ногти. Покровы из мягких клеток -слизистая оболочка рта и язык.
Переходная - по строению схожа с неороговевшим слоистым эпителием, но клетки более крупные и округлые. Это делает ткань эластичной; из нее образованы такие органы, как мочевой пузырь, то есть те, которые должны растягиваться.

Как простой, так и сложный эпителий , должны прикрепляться к соединительной ткани. Место соединения двух тканей известно как нижняя мембрана.

Соединительная ткань

Бывает твердой, полутвердой и жидкой. Насчитывают 8 видов соединительной ткани: ареолярная, жировая, лимфатическая, эластичная, фиброзная, хрящевая, костная и кровяная.

  1. Ареолярная ткань - полутвердая, проницаемая, находится по всему телу, являясь связующей и опорной для других тканей. Она состоит из протеиновых волокон коллагена, эластина и ретикулина, которые обеспечивают ее силу, эластичность и прочность.
  2. Жировая ткань - полутвердая, присутствует там же, где и ареолярная, формируя изоляционный подкожный слой, который способствует сохранению телом тепла.
  3. Лимфатическая ткань - полутвердая, содержащая клетки, которые защищают организм, поглощая бактерии. Лимфатическая ткань формирует те органы, которые ответственны за контроль здоровья организма.
  4. Эластичная ткань - полутвердая, является основой эластичных волокон, которые могут растягиваться и при необходимости восстанавливать форму. Примером является желудок.
  5. Фиброзная ткань - прочная и твердая, состоящая из соединительных волокон из протеина коллагена. Из этой ткани образованы сухожилия, которые соединяют мышцы и кости, и связки, соединяющие кости между собой.
  6. Хрящевая ткань - твердая, обеспечивающая связь и защиту в форме гиалиновых хрящей, соединяющих кости с суставами, волокнистых хрящей, соединяющих кости с позвоночником, и эластичных хрящей уха.
  7. Костная ткань - твердая. Из нее состоят твердый, плотный компактный слой кости и несколько менее плотное губчатое вещество кости, которые вместе формируют костную систему.
  8. Кровь - жидкое вещество, состоящее на 55% из плазмы и на 45% из клеток. Плазма составляет основную жидкую массу крови, а клетки в ней выполняют защитную и соединительную функции.

Мышечная ткань

Мышечная ткань обеспечивает движение тела. Различают скелетную, висцеральную и кардиальную виды мышечной ткани.

  1. Скелетная мышечная ткань - бороздчатая. Она отвечает за сознательное движение тела, например движение при ходьбе.
  2. Висцеральная мышечная ткань - гладкая. Она ответственна за непроизвольные движения, такие как передвижение пищи по пищеварительной системе.
  3. Сердечная мышечная ткань обеспечивает пульсацию сердца - сердцебиение.

Нервная ткань

Нервная ткань выглядит как пучки волокон; она составлена клетками двух видов: нейронами и нейроглиями. Нейроны - длинные, чувствительные клетки, которые принимают сигналы и реагируют на них. Нейроглии поддерживают и защищают нейроны.

Органы и железы

В организме ткани разных видов соединяются и образуют органы и железы. Органы имеют особое строение и функции; они составлены тканями двух или более видов. К органам относятся сердце, легкие, печень, мозг и желудок. Железы состоят из эпителиальной ткани и вырабатывают особые вещества. Различают два типа желез: эндокринные и экзокринньте. Эндокринные железы называют железами внутренней секреции, т.к. они выбрасывают вырабатываемые вещества - гормоны - непосредственно в кровь. Экзокринные (железы внешней секреции) - в каналы, например, пот из соответствующих желез по соответствующим каналам доходит до поверхности кожи.

Системы организма

Группы связанных между собой органов и желез, которые выполняют сходные функции, формируют системы мы организма. К ним относятся: покровная, скелетная, мышечная, респираторная (дыхательная), кровеносная (циркуляторная), пищеварительная, мочеполовая, нервная и эндокринная.

Организм

В организме все системы работают сообща, обеспечивая жизнь человека.

Размножение

Мейоз : новый организм образуется при слиянии мужской спермы и женской яйцеклетки. И в яйцеклетке, и в сперме содержится по 23 хромосомы, в целой клетке - в два раза больше. Когда происходит оплодотворение, яйцеклетка и сперматозоид сливаются, образуя зиготу, у которой
46 хромосом (по 23 от каждого из родителей). Зигота делится (митоз), и формируется эмбрион, зародыш и, наконец, человек. В процессе этого развития клетки приобретают индивидуальные функции (некоторые из них становятся мышечными, другие костными и т.д.).

Митоз - простое деление клеток - продолжается на протяжении всей жизни. Существуют четыре стадии митоза: профаза, метафаза, анафаза и телофаза.

  1. Во время профазы делится каждая из двух центриолей клетки, при этом двигаясь в противоположные части клетки. В то же самое время хромосомы в ядре образуют пары, а мембрана ядра начинает разрушаться.
  2. Во время метафазы хромосомы размещаются по оси клетки между центриолями, одновременно с этим исчезает защитная мембрана ядра.
    Во время анафазы продолжается раздвижение центриолей. Отдельные хромосомы начинают движение в противоположных направлениях, следуя за центриолями. Цитоплазма в центре клетки суживается, и клетка сжимается. Процесс деления клетки называется цитокинезом.
  3. Во время телофазы цитоплазма продолжает сжиматься, пока не образуются две идентичные дочерние клетки. Вокруг хромосом формируется новая защитная мембрана, а у каждой новой клетки - по одной паре центриолей. Сразу после деления в образовавшихся дочерних клетках недостаточно органелл, но по мере роста, называемого интерфазой, они достраиваются, перед тем как клетки снова поделятся.

Частота деления клетки зависит от ее вида, к примеру, клетки кожи размножаются быстрее, чем костные.

Выделение

Ненужные вещества образуются в результате дыхания и обмена веществ и должны быть удалены из клетки. Процесс их удаления из клетки происходит по той же схеме, что и впитывание питательных веществ.

Движение

Маленькие волоски (реснички) некоторых клеток совершают движения, а целые кровяные клетки двигаются по всему организму.

Чувствительность

Клетки играют огромную роль в формировании тканей, желез, органов и систем, которые мы будем подробно изучать, продолжая наше путешествие по организму.

Возможные нарушения

Болезни возникают в результате разрушения клеток. С развитием болезни это отражается на тканях, органах и системах и может оказать влияние на весь организм.

Клетки могут разрушаться по ряду причин: генетических (наследственные заболевания), дегенеративных (при старении), зависящих от окружающей среды, например при слишком высоких температурах, или химических (отравления).

  • Вирусы могут существовать только в живых клетках, которые они захватывают и в которых размножаются, вызывая инфекции, например простудные (вирус герпеса).
  • Бактерии могут жить и вне тела и делятся на патогенные и непатогенные. Патогенные бактерии вредны и вызывают заболевания, такие как импетиго, а непатогенные безвредны: они поддерживают здоровье организма. Некоторые такие бактерии живут на поверхности кожи и защищают ее.
  • Грибки используют для жизни другие клетки; они тоже бывают патогенными и непатогенными. Патогенные грибки - это, например, грибки ног. Некоторые непатогенные грибки используют в производстве антибиотиков, в том числе пенициллина.
  • Черви, насекомые и клещи являются возбудителями заболеваний. К ним относятся глисты, блохи, вши, чесоточные клещи.

Микробы заразны, т.е. могут передаваться от человека к человеку в процессе инфицирования. Заражение может произойти при личном контакте, например прикосновении, или при контакте с инфицированным инструментом, таким как щетка для волос. При болезни могут проявляться симптомы: воспаление, жар, отеки, аллергические реакции и опухоли.

  • Воспаление - краснота, жар, отек, боль и утеря способности нормально функционировать.
  • Жар - повышенная температура тела.
  • Отек - припухлость в результате избыточного количества жидкости в ткани.
  • Опухоль - аномальное разрастание ткани. Может быть доброкачественной (неопасной) и злокачественной (может прогрессировать, приводя к летальному исходу).

Заболевания можно классифицировать, разделяя на локальные и системные, наследственные и приобретенные, острые и хронические.

  • Локальные - болезни, при которых затронута определенная часть или зона организма.
  • Системные - болезни, при которых поражен весь организм или несколько его частей.
  • Наследственные заболевания есть уже при рождении.
  • Приобретенные заболевания развиваются после рождения.
  • Острые - заболевания, которые возникают внезапно и быстро проходят.
  • Хронические болезни долговременны.

Жидкость

Человеческий организм на 75% состоит из воды. Большая часть этой воды, находящаяся в клетках, называется внутриклеточной жидкостью. Остальная вода содержится в крови и слизи и называется внеклеточной жидкостью. Количество воды в организме связано с содержанием в нем жировой ткани, а также от пола и возраста. В жировых клетках не содержится вода, поэтому в организме худых людей процентное содержание воды выше, чем у тех, у кого большая жировая прослойка. Кроме того, у женщин обычно больше жировой ткани, чем у мужчин. С возрастом содержание воды уменьшается (больше всего воды в организмах младенцев). Большую часть воды обеспечивают еда и питье. Другой источник воды - диссимиляция в процессе обмена веществ. Ежедневная потребность человека в воде - около 1,5 литра, т.е. столько же, сколько организм теряет за день. Вода уходит из организма с мочой, фекалиями, потом и при дыхании. Если тело теряет больше воды, чем получает, происходит обезвоживание. Баланс воды в организме регулируется жаждой. Когда организм обезвоживается, во рту возникает ощущение сухости. Мозг реагирует на этот сигнал жаждой. Возникает желание пить, чтобы восстановить баланс жидкости в организме.

Отдых

Каждый день есть время, когда человек может спать. Сон - это отдых для тела и мозга. Во время сна тело частично находится в сознании, большинство его частей временно приостанавливают свою работу. Организму нужно это время полного отдыха, чтобы «подзарядить батарейки». Потребность в сне зависит от возраста, рода деятельности, образа жизни и уровня стресса. Она также индивидуальна для каждого человека и варьирует от 16 часов в сутки для младенцев до 5 для пожилых людей. Сон идет в две фазы: медленный и быстрый. Медленный сон глубокий, без сновидений, он составляет около 80% всего сна. Во время быстрого сна мы видим сны, обычно три-четыре раза за ночь, продолжительностью до часа.

Активность

Наравне со сном организм нуждается в активности, чтобы оставаться здоровым. В организме человека есть клетки, ткани, органы и системы, ответственные за движение, некоторые из них контролируемы. Если человек не пользуется этой возможностью и предпочитает сидячий образ жизни, контролируемые движения становятся ограниченными. В результате недостаточной физической нагрузки может снизиться умственная активность, и фраза «если не будешь пользоваться, потеряешь» относится и к телу, и к разуму. Баланс между отдыхом и активностью разный для разных систем организма и будет рассмотрен в соответствующих главах.

Воздух

Воздух - это смесь атмосферных газов. Он состоит приблизительно на 78% из азота, на 21% из кислорода, и еще 1% составляют другие газы, в том числе углекислый. Кроме этого, воздух содержит определенное количество влаги, примесей, пыли и т.д. Вдыхая, мы употребляем воздух, используя примерно 4% кислорода, содержащегося в нем. В процессе потребления кислорода образуется углекислый газ, поэтому в воздухе, который мы выдыхаем, больше оксида углерода и меньше кислорода. Уровень азота в воздухе не меняется. Кислород необходим для поддержания жизни, без него все существа погибли бы за считанные минуты. Другие компоненты воздуха могут быть вредны для здоровья. Уровень загрязнения воздуха бывает разным; следует по возможнос ти избегать вдыхания загрязненного воздуха. Например, при вдыхании воздуха, содержащего табачный дым, происходит пассивное курение, которое может оказать отрицательное воздействие на организм. Искусство дыхания - то, что чаще всего сильно недооценивают. Оно будет развиваться, чтобы мы могли использовать наиболее полно эту естественную способность.

Возраст

Старение - это прогрессирующее ухудшение способности организма реагировать на поддержание гомеостаза. Клетки способны самовоспроизводится митозом; считается, что в них запрограммировано определенное время, в течение которого они размножаются. Это подтверждается постепенным замедлением и в конце концов прекращением жизненно важных процессов. Еще один фактор, влияюший на процесс старения, -эффект свободных радикалов. Свободные радикалы -токсичные вещества, сопровождающие энергетический обмен. К ним относятся загрязнение, радиация и некоторая пища. Они причиняют вред определенным клеткам, потому что влияют не их способность усваивать питательные вещества и избавляться от продуктов распада. Итак, старение вызывает заметные изменения в анатомии и физиологии человека. В этом процессе постепенного ухудшения усиливается склонность организма к заболеваниям, появляются физические и эмоциональные симптомы, с которыми трудно бороться.

Цвет

Цвет - необходимая часть жизни. Каждая клетка для того, чтобы выжить, нуждается в свете, а в нем содержится цвет. Растениям свет нужен для выработки кислорода, который людям необходим для дыхания. Радиоактивная солнечная энергия дает питание, которое необходимо физическим, эмоциональным и духовным аспектам человеческой жизни. Изменения света влекут за собой изменения в организме. Так, восход солнца пробуждает наш организм, в то время как закат и связанное с ним исчезновение света вызывает сонливость. В свете есть и видимые, и невидимые цвета. Около 40% солнечных лучей несут видимые цвета, которые становятся такими из-за разницы их частот и длин волн. К видимым цветам относятся красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый - цвета радуги. Совмещенные, эти цвета образуют свет.

Свет проникает в организм через кожу и глаза. Глаза, раздражаемые светом, подают сигнал мозгу, который интерпретирует цвета. Кожа ощущает разные колебания, производимые разными цветами. Этот процесс большей частью подсознательный, но его можно вывести на сознательный уровень, тренируя восприятие цветов руками и пальцами, что иногда называют «лечением цветом».

Определенный цвет может производить только один эффект на организм, в зависимости от длины его волн и частоты колебаний, кроме того, разные цвета связывают с разными частями тела. Мы подробнее ознакомимся с ними в следующих главах.

Знание

Знание терминов анатомии и физиологии поможет вам лучше узнать человеческий организм.

Анатомия относится к строению, и есть специальные термины, которыми обозначают анатомические понятия:

  • Передний - находящийся в передней части корпуса
  • Задний - находящийся в задней части корпуса
  • Нижний - относящийся к нижней части тела
  • Верхний - расположенный выше
  • Внешний - находящийся снаружи организма
  • Внутренний - находящийся внутри тела
  • Лежащий навзничь - опрокинувшийся на спину, вверх лицом
  • Лежащий ничком - размещенный лицом вниз
  • Глубокий - находящийся под поверхностью
  • Поверхностный - лежащий у поверхности
  • Продольный - расположенный по длине
  • Поперечный - лежащий поперек
  • Средняя линия - центральная линия тела, от макушки до пальцев ног
  • Срединный - расположенный посередине
  • Боковой - удаленный от середины
  • Периферический - максимально удаленный от прикрепления
  • Ближний - ближайший к прикреплению

Физиология относится к функционированию.

В ней используются следующие термины:

  • Гистология - клетки и ткани
  • Дерматология - покровная система
  • Остеология - скелетная система
  • Миология - мышечная система
  • Кардиология - сердце
  • Гематология - кровь
  • Гастроэнтерология - пищеварительная система
  • Гинекология - женская репродуктивная система
  • Нефрология - мочевыделительная система
  • Неврология - нервная система
  • Эндокринология - выделительная система

Специальный уход

Гомеостаз - это состояние, при котором клетки, ткани, органы, железы, системы органов работают в гармонии с собой и друг с другом.

Эта совместная работа обеспечивает наилучшие условия для здоровья отдельных клеток, ее поддержание - необходимое условие для благополучия всего организма. Один из главных факторов, влияющих на гомеостаз, -стресс. Стресс бывает внешним, например колебания температуры, шумы, недостаток кислорода и т.д., или внутренним: боль, волнение, страх и т. д. Организм сам борется с ежедневными стрессами, у него для этого есть эффективные механизмы противодействия. И все же нужно держать ситуацию под контролем, чтобы не произошел дисбаланс. Серьезный дисбаланс, вызванный излишним продолжительным стрессом, может подорвать здоровье.

Косметические и оздоровительные процедуры помогают клиенту осознать действие стресса, возможно, вовремя, а дальнейшая терапия и советы специалиста предотвращают возникновение дисбаланса и способствуют поддержанию гомеостаза.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (предъядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Прокариотическая клетка

Эукариотическая клетка

Строение эукариотической клетки

Поверхностный комплекс животной клетки

Состоит из гликокаликса , плазмалеммы и расположенного под ней кортикального слоя цитоплазмы . Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана , толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира - гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов , полисахаридов , гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков , в частности, поверхностных антигенов и рецепторов . В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета - упорядоченные определённым образом актиновые микрофиламенты . Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий . При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды . На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек , служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов , играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы , относят к гранулярному (или шероховатому ) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР, принимающему участие в синтезе липидов . Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки .

Аппарат Гольджи
Ядро
Цитоскелет
Центриоли
Митохондрии

Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970-1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета . Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот - обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот - например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5-5 мкм , размеры эукариотических - в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток - это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии .

История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, -) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов , однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

См. также

  • Сравнение строения клеток бактерий, растений и животных

Ссылки

  • Molecular Biology Of The Cell, 4е издание, 2002 г. - учебник по молекулярной биологии на английском языке
  • Цитология и генетика (0564-3783) публикует статьи на русском, украинском и английском языках по выбору автора, переводится на английский язык (0095-4527)

Расскажите
друзьям!

Во времена Дарвина считалось, что клетка - это просто мешочек с раствором химических веществ и свободно плавающих в нем простых компонент. Такой она виделась в окуляре существовавших тогда микроскопов. Поэтому не составляло особого труда представить, как такой несложный объект мог спонтанно возникнуть в «первичном бульоне» путем небольших последовательных изменений.

Сегодня понятно, что клетку, по сложности структуры и происходящих в ней процессов, можно без преувеличения сравнить с большим мегаполисом. А как многого о мы ещё не знаем и не понимаем!

В дальнейшем, с совершенствованием технологий, развивалось и понимание строения и организации клетки. Известная нам структура усложнялась, но принципиально на веру в возможность самозарождения до некоторых пор не влияла. Даже сейчас многие люди слабо представляют степень сложности устройства обыкновенной живой клетки.

Однако за последние десятилетия наше понимание внутреннего мира клетки возросло взрывоподобно. И новые исследования одно за другим продолжают открывать невероятно сложные и эффективные механизмы и устройства внутри клетки. Этот удивительно устроенный микромир содержит:

  • совершенные системы хранения, считывания и копирования (с коррекцией ошибок) огромных объемов генетической информации;
  • фабрики синтеза белковых цепочек и придания им правильной трехмерной формы;
  • транспортные сети для перемещения необходимых веществ и компонент;
  • настоящие коммуникационные сети для внутриклеточного и межклеточного (в случае многоклеточных организмов) информационного обмена;
  • преобразователи энергии (из электрической или световой в химическую);
  • различные двигатели (роторные и поступательные);
  • транспортные каналы внутрь и наружу клетки (действующие как избирательные насосы);
  • различные регуляторные механизмы; и множество других изощрённых нано-систем...
  • Без большинства из них не обходится ни одна живая клетка, даже самая «простая»... И эти системы, которые сами по отдельности являются неупрощаемо сложными, неразрывно связаны и зависят друг от друга, демонстрируя неупрощаемую сложность второго порядка.

    Предлагаем Вам посмотреть анимационные ролики, на которых показаны некоторые удивительные механизмы и процессы внутри живых клеток. Эти видео - не плод фантазии художников, а результат многолетних исследований многих учёных. Лишь цвета и, возможно, некоторые незначительные детали являются художественным допущением.

    АТФ-синтаза

    На видео показан один из примеров потрясающих клеточных механизмов - фермент АТФ-синтаза. Этот фермент представляет собой настоящий роторный нано-мотор, состоящий, как и изобретенные человеком электродвигатели, из неподвижного статора и вращающегося со скоростью до 7 000 оборотов в минуту ротора. АТФ-синтаза - клеточный «энергетический завод», он преобразует электрическую энергию потока протонов (позитивно заряженных частиц) в химическую энергию, производя молекулы АТФ (аденозинтрифосфат). АТФ - это универсальная энергетическая «валюта» клетки, участвующая практически в каждой биохимической реакции.

    Кинезин

    Кинезин - потрясающий миниатюрный мотор, участвующий в системе транспортировке белков внутри живой клетки. Белки необходимо доставить в определённую часть клетки, чтобы они могли выполнять свои функции. Эта анимация, основанная на ряде искусных исследований в течение многих лет, показывает, каким образом это происходит. Магистрали из микротрубочек собраны из взаимосцепленных белков, каждый из которых произведён согласно инструкциям, закодированным в ДНК клетки. Мы видим, как мотор кинезин, герой нашего рассказа, шагает вдоль микротрубочки, и тащит за собой огромный мешок с белками, чтобы доставить его в заранее определённое место внутри клетки. Там белки будут высвобождены для выполнения своих функций. Линейный мотор кинезин использует 1 молекулу АТФ в качестве источника энергии для каждого шага и делает 125 тысяч шагов, чтобы преодолеть один миллиметр! Этот потрясающий механизм демонстрирует все признаки разумного замысла!

    Синтез белка

    Удивительный и невероятно сложный процесс производства белка по инструкциям, закодированным в ДНК, непрерывно происходящий в каждой живой клетке. Весь этот многоэтапный процесс и комплекс осуществляющих его механизмов должен был появиться сразу, целиком, чтобы первая живая клетка могла жить

    Сборка бактериального жгутика

    На этом видео показан процесс сборки бактериального жгутика, благодаря которому бактерия может перемещаться в окружающей её жидкости. Каждый из маленьких блоков на самом деле является белком - цепочкой аминокислот, собранной по инструкциям, закодированным на ДНК, как показано в видео «Синтез белка».

Можно сказать, что живые организмы - это сложная система, выполняющая различные функции необходимые для нормальной жизнедеятельности. Они состоят из клеток. Поэтому, подразделяются на многоклеточные и одноклеточные. Именно клетка составляет основу любого организма, независимо от его структуры.

Одноклеточные организмы имеют только один У многоклеточных живых организмов представлены различные типы клеток, которые отличаются по своему функциональному значению. Изучением клетки занимается цитология, которую включает в себя наука биология.

Строение клетки практически одинаково для любого их типа. Они различаются по функциям, размерам и форме. Химический состав тоже типичен для всех клеток живых организмов. Клетка содержит главные молекулы: РНК, белки, ДНК и элементы полисахаридов и липидов. Почти на 80 процентов клетка состоит из воды. Кроме этого в ее состав входят сахара, нуклеотиды, аминокислоты и прочие продукты процессов, происходящих в клетке.

Строение клетки живого организма состоит из множества компонентов. Поверхность клетки составляет мембрана. Она позволяет обеспечить клетке проникновение только определенных веществ. Между клеткой и мембраной находится жидкое Именно мембрана является посредником в обменных процессах, происходящих между клеткой и межклеточной жидкостью.

Основным компонентом клетки является цитоплазма. Это вещество вязкой, полужидкой консистенции. В ней содержится органоиды, которые выполняют ряд функций. К ним относятся следующие компоненты: клеточный центр, лизосомы, ядро, митохондрии, эндоплазматическая сеть, рибосомы и комплекс Гольджи.Каждый из этих компонентов обязательно входит в строение клетки.

Вся цитоплазма состоит из множества канальцев и полостей, которые представляют собой эндоплазматическую сеть. Вся эта система синтезирует, накапливает и продвигает органические соединения, которые вырабатывает клетка. Эндоплазматическая сеть участвует и в синтезе белка.

Помимо нее в синтезе белка принимают участие рибосомы, которые содержат РНК и белок. Комплекс Гольджи влияет на образование лизосом и накапливает Это специальные полости с пузырьками на концах.

Клеточный центр содержит два тельца, участвующих в Клеточный центр расположен непосредственно возле ядра.

Так постепенно мы подобрались к главному компоненту в строение клетки - ядру. Это самая важная часть клетки. Оно содержит ядрышко, белки, жиры, углеводы и хромосомы. Вся внутренность ядра заполнена ядерным соком. Всю информацию о наследственности содержат клетки тела человека предусматривает наличие 46 хромосом. Половые клетки состоят из 23 хромосом.

В строение клеток входят и лизосомы. Они очищают клетку от отмерших частиц.
Клетки, кроме основных компонентов, содержат и некоторые соединения органического и неорганического характера. Как уже было сказано, клетка состоит на 80 процентов из воды. Еще одним неорганическим соединением, которое входит в ее состав, являются соли. Вода играет важную роль в жизнедеятельности клетки. Она является главным участникам химических реакций, в качестве переносчика веществ и вывода из клетки вредных соединений. Соли способствуют правильному распределению воды в структуре клетки.

Среди органических соединений присутствуют: водород, кислород, сера, железо, магний, цинк, азот, йод, фосфор. Они являются жизненно необходимыми для преобразования в сложные органические соединения.

Клетка - это основная составляющая любого живого организма. Ее структура - сложный механизм, в котором не должно быть ни каких сбоев. Иначе, это приведет к неизменным процессам.

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.