Система микроциркуляции. Препараты улучшающие микроциркуляцию крови нижних конечностей

Микроциркуляцией называется движение крови по мелким кровеносным и лимфатическим сосудам – артериолам, венулам, капиллярам. При нарушении этого процесса возникает недостаточное питание тканей и застойные явления. Для лечения нужно воздействовать на причину появления этого состояния и использовать препараты, активизирующие периферическую гемодинамику.

Читайте в этой статье

Причины микроциркуляторных нарушений

К факторам, которые могут привести к расстройству кровотока в мелких сосудах, относятся:

  • нарушение кровообращения в более крупных сосудистых сетях – ишемия, гиперемия (патологический приток крови) артериальная и венозная, ;
  • обезвоживание (обильная рвота, понос, прием мочегонных, ожоги);
  • чрезмерное разведение крови (инфузионная терапия, почечная недостаточность);
  • усиленная активность свертывающей системы;
  • разрушение стенок при воспалительных, атеросклеротических или опухолевых процессах.

Симптомы патологии

Расстройства кровообращения могут сформироваться в любом органе, но наиболее значимые поражения возникают в миокарде, мозговой и почечной ткани, а также в сосудистой сети нижних конечностей.

Сердце

В сердечной мышце преобладающим видом нарушения микроциркуляции является ишемия. Она приводит к снижению сократительной способности миокарда. Клинические проявления – , и . Может привести к смертельным осложнениям или формированию хронической недостаточности.

Первые признаки развития ишемии:

  • общая слабость;
  • плохая переносимость физической активности;
  • незначительные или умеренные боли, покалывание в области сердца;
  • снижение работоспособности.

При выраженной ишемии больные ощущают сильные приступы боли за грудиной, которые распространяются на руку, лопатку, шею.

Головной мозг

При остром прекращении питания головного мозга формируется инсульт. Постепенное перекрытие артерий на фоне атеросклероза, гипертонии, остеохондроза приводит к застойным процессам и отечности мозговой ткани с очагами некроза. Это провоцирует развитие дисциркуляторной энцефалопатии с такими симптомами:

  • забывчивость,
  • нарушение эмоционального фона,
  • снижение способности к познанию,
  • затруднение координации движений,
  • шаткость при ходьбе,
  • слабость в конечностях.


Ишемия головного мозга (нарушение микроциркуляции)

Почки

Расстройства микроциркуляции в почечной ткани возникают при остром прекращении притока крови (острая недостаточность) или вследствие хронических прогрессирующих процессов. Последние встречаются гораздо чаще и сопровождают:

  • сахарный диабет,
  • аутоиммунные заболевания,
  • пиело- или гломерулонефрит.


Острая почечная недостаточность

При этих болезнях капиллярно-трофические нарушения развиваются медленнее, чем при острых, их проявления могут быть стертыми: общая слабость, головная боль, частое мочеиспускание по ночам, отеки под глазами и на лодыжках по утрам.

Острая почечная недостаточность сопровождается резким падением или прекращением выделения мочи, отравлениям организма азотистыми продуктами обмена веществ.Только при своевременном обращении к врачу можно исправить ситуацию.

Нижние конечности

Распространенными причинами микроциркуляторных нарушений в ногах бывают:

  • (спазм артерий, перемежающаяся хромота);
  • ангиопатия при диабете.

При тромбозе нарушения питания тканей могут возникнуть внезапно. Его признаком бывает резкая боль, отечность, бледность или цианоз кожи. Хронические изменения характеризуются медленным нарастанием этих проявлений, снижением чувствительности.

При сахарном диабете больные отмечают постоянную зябкость ног, чувство ползания мурашек, онемение, потерю реакции на холод и тепло, микротравмы . Часто микроциркуляторные нарушения способствуют развитию грибковых инфекций на стопах, врастанию ногтей, трещинам на пятках и появлению длительно незаживающих язв.

Сморите на этом видео о нарушении периферического кровообращения и микроциркуляции:

Диагностика нарушений периферического кровотока

Для выявления ишемических нарушений используются следующие методы (в зависимости от локализации патологического процесса):

Возникает цереброваскулярная недостаточность из-за недостаточного питания кровью мозга. Первоначально симптомы не выдают патологию. Однако острая форма, а позже хроническая приводят к крайне печальным последствиям. Только лечение головного мозга на начальной стадии дает возможность избежать инвалидности.

  • Назначают ангиопротекторы и препараты с ними для улучшения сосудов, вен и капилляров. Классификация делит их на несколько групп. Лучшие и современные корректоры микроциркуляции, венотоники подойдут для глаз, ног при отеках.
  • Головокружения, обмороки, потеря сознания и другие неблагоприятные симптомы могут говорить о том, что появился венозный застой в голове, легких, шейном отделе (при шейном остеохондрозе), печени. Каковы его причины? Как проходит лечение? Почему возникает ангиопатия по застойному типу?
  • При нарушениях кровообращения может возникнуть транзиторная ишемическая атака. Причины ее кроются в основном в атеросклеротических отложениях. Больному нужна срочная помощь и лечение, иначе последствия транзиторной церебральной атаки могут быть необратимы.


  • 1. Микроциркуляторное русло составляют артериолы, метартериолы, капилляры, венулы.

    2. Обмен осуществляется с помощью диффузии, фильтрации и реабсорбции.

    3. На артериальном конце капилляра преобладают процессы фильтрации, на венозном – реабсорбции, причём процессы фильтрации преобладают над процессами реабсорбции. Средняя скорость фильтрации 20 л в сутки, реабсорбции – 18 л в сутки.

    4. Фильтрация возрастает при увеличении кровяного давления, при мышечной работе, при переходе в вертикальное положение, при увеличении объёма циркулирующей крови.

    5. Реабсорбция увеличивается при снижении кровяного давления, потере крови.

    6. Нереабсорбированная часть плазмы удаляется из интерстициального пространства через лимфатические сосуды – около 2 л в сутки.

    Выделяют три типа капилляров: 1) первый тип –сплошные капилляры (соматические ) – стенка этих капилляров образована сплошным слоем эндотелиальных клеток, в мембране которых имеются мельчайшие поры. Стенка таких капилляров мало проницаема для крупных молекул белка, но легко пропускает воду и растворенные в ней минеральные вещества. Этот тип капилляров характерен для скелетных и гладких мышц, кожи, лёгких, ЦНС, жировой и соединительной ткани; 2) второй тип –окончатые (висцеральные ) . В стенке этих капилляров имеются «окна» (фенестры ), которые могут занимать до 30% площади поверхности клеток. Такие капилляры характерны для органов, которые секретируют и всасывают большое количество воды и растворенных в ней веществ, или участвуют в быстром транспорте макромолекул: клубочки почки, слизистая оболочка кишечника, эндокринные железы; 3) третий тип – межклеточно-окончатые, несплошные капилляры (синусоидные) . Эндотелиальная оболочка этих капилляр прерывистая, клетки эндотелия расположены далеко друг от друга и благодаря этому образуются большие межклеточные пространства. Через стенку этих капилляров легко проходят макромолекулы и форменные элементы крови. Такие капилляры встречаются в костном мозге, печени и селезенки.

    Механизм образования лимфы Связан с фильтрацией плазмы из кровеносных капилляров в Интерстициальное пространство, В резуль­тате чего образуется Интерстициальная (тканевая) жидкость.

    Капилляроскопия - прижизненное изучение кровеносных капилляров. Для наблюдения применяется капилляроскоп с увеличением до 40-100 раз. При этом чаще всего исследуют капилляры ногтевого ложа IV пальца кисти. Кроме визуального наблюдения проводят и фотографирование, которое представляет определенные трудности. Обращают внимание на цвет и прозрачность фона, число, форму, величину капиллярных петель, соотношение венозных и артериальных браншей, динамичность изменения капилляроспокической картины, скорость кровотока. В норме наблюдается прозрачный розового цвета фон с 3-4 рядами изогнутых в форме дамской шпильки или реже в форме восьмерки каппилляров, число которых составляет около 8 в 1 мм2. Часть капилляров периодически суживается, другая расширяется, некоторые постоянно не заполняются кровью. Эта непрерывная «игра» капилляров является результатом нормального обмена веществ в тканях, а сама норма, по мнению большинства исследователей, является ориентировочной схемой, применение которой возможно лишь с учетом клинических особенностей данного наблюдения.


    Сосудосуживающая иннервация представлена симпатическими нервами – это главный регуляторный механизм сосудистого тонуса. Медиатором симпатических нервов является норадреналин, который активирует α-адренорецепторы сосудов и приводит к вазоконстрикции.

    Сосудорасширяющая иннервация более разнородна:

    · парасимпатические нервы (медиатор ацетилхолин), ядра которых располагаются в стволе мозга, иннервируют сосуды головы. Парасимпатические нервы крестцового отдела спинного мозга иннервируют сосуды половых органов и мочевого пузыря.

    · симпатические холинергические нервы иннервируют сосуды скелетных мышц. Морфологически они относятся к симпатическим, однако выделяют медиатор ацетилхолин, который вызывает сосудорасширяющий эффект.

    · симпатические нервы сердца (медиатор норадреналин). Норадреналин взаимодействует с β-адренорецепторами коронарных сосудов сердца и вызывает вазодилатацию.

    Сосудистый тонус - напряжение сосудистой стенки, которое создается сокращением ее гладкомышечных клеток и изменяет диаметр просвета сосудов. Изменение сосудистого тонуса - главный механизм регуляции периферического и регионального сосудистого сопротивления. К активному изменению тонуса способны сосуды мышечного типа (мелкие артерии и вены, артериолы и венулы, сфинктеры). Существует два вида сосудистого тонуса, принципиально различающихся механизмами его регуляции. Центральный (нейрогенный ) тонус регулируется вегетативной нервной системой. Иннервация сосудов в основном осуществляется симпатической нервной системой. Большинство сосудов внутренних органов, кожи содержат а-адренорецепторы. Через них осуществляется сосудосуживающее влияние нервной системы. Сосуды мозга и миокарда содержат в основном бета-адренорецепторы, через которые осуществляется сосудорасширяющее действие. Периферический (базальный) тонус - напряжение сосудистом стенки, которое сохраняется после полной денервации сосудов. Это указывает на то, что помимо нервной системы существуют другие сосудодвигательные механизмы. Базальный тонус регулируется за счет воздействия вазоактивных тканевых метаболитов, эндотелиальных факторов, биологически активных веществ и гормонов. Кроме того, важную роль играет так называемая миогенная регуляция. Миогенная регуляция сосудистого тонуса (эффект Бейлиса-Остроумова) основана на реакции гладкомышечных клеток сосудов на растяжение.

    1. Рефлексы с барорецепторов сосудов: при растяжении стенки сосуда в рефлексогенных зонах дуги аорты и каротидного синуса, возбуждаются барорецепторы. Афферентные волокна идут в составе языкоглоточного нерва к сосудодвигательному центру продолговатого мозга, тормозится его прессорный отдел.

    2. Частота импульсации по афферентам определяется величиной кровяного давления. Срабатывает отрицательная обратная связь: повышение давления приводит к вазодилатации (расширение сосудов) и снижению сердечного выброса.

    3. Рефлексы, возникающие с рецептивных зон сердечно-сосудистой системы, называются собственные рефлексы.

    4. Сопряжённые рефлексы возникают, когда в ответную реакцию вовлекаются другие органы и системы (АД повышается при болевом и температурном раздражение кожи, при растяжении мочевого пузыря, при растяжении желудка).

    5. Перераспределительные рефлексы: просвет сосуда может меняться только в определённом участке, при этом общее кровяное давление не меняется (при местном нагревании или местном воздействии холода, при раздражении рецепторов ЖКТ и т.д.).

    6. Рефлексы с рецепторов растяжения сердца реализуются с участием рецепторов, которые находятся в предсердиях: рецепторы А-типа возбуждаются при сокращении предсердий; рецепторы В-типа возбуждаются при растяжении предсердий при увеличении давления в полостях сердца.

    7. Рефлексы с участием центральных и периферических хеморецепторов :

    · периферические хеморецепторы рефлексогенных зон дуги аорты и каротидного синуса реагируют на изменение содержания О 2 и СО 2 и концентрации Н + в крови. Импульсы от хеморецепторов поступают в сосудодвигательный и дыхательный центр.

    · центральные хеморецепторы возбуждаются при недостаточном кровоснабжении головного мозга, падении АД, увеличении содержания углекислого газа в крови. Рефлекторная реакция заключается в сужении сосудов и повышении АД.

    8. К дополнительным механизмам регуляции давления относится изменение процессов обмена в капиллярах:

    · при повышении АД в капиллярах начинают преобладать процессы фильтрации, при этом объём циркулирующй крови уменьшается, давление падает;

    · при понижении АД в капиллярах преобладают процессы реабсорбции, что приводит к задержке воды в крови и препятствует дальнейшему снижению давления.

    9. Ренин-ангиотензиновая система: в юкстагломерулярном аппарате почек синтезируется фермент ренин. Он высвобождается в кровь и расщепляет ангиотензиноген, при этом образуется ангиотензин I, который в сосудах лёгких превращается в ангиотензин II и является мощным вазоконстриктором.

    10. Альдостерон усиливает реабсорбцию Na + и воды (увеличивая объём циркулирующей крови) и повышает чувствительность гладких мышц сосудов к сосудосуживающим веществам: адреналину и ангиотензину.

    Сосудодвигательный центр - отдел продолговатого мозга, играющий ведущую роль в поддержании тонуса сосудов и рефлекторной регуляции кровяного давления; сосудодвигательный центр имеет структурные и функциональные связи с центрами ствола и коры головного мозга, гипоталамуса, мозжечка, базальными ядрами; тонус сосудодвигательного центра регулируется импульсами, поступающими от сосудистых рефлексогенных зон (дуга аорты, каротидные зоны, устье полых вен, сосуды малого круга кровообращения), хеморецепторов и ретикулярной формации.

    Микроциркуляторная система осуществляет наиважнейшие для организма функции. Главная из них — обеспечение нормального течения обменных процессов.
    Условно микроциркуляторную систему можно разделить на артериальную, капиллярную и венозную сеть. Основное звено микроциркуляции составляют капилляры. Кровь к капиллярам доставляют артериолы, а оттекающая из них кровь собирается в венулы, которые при необходимости способны перераспределять ее в разные участки организма.
    Для бесперебойного осуществления процессов микроциркуляции имеют значение и физические свойства крови, определяющие ее текучесть. В норме эритроциты, например, проходя через капилляры, способны деформироваться, сгибаться. Если же движение крови замедляется, как то бывает при сердечной недостаточности, ожогах, интоксикации организма, эритроциты склеиваются между собой, забивая, как пробки, капилляры. При некоторых заболеваниях эритроциты становятся жесткими, застревают в капиллярах, нарушая их проходимость. Иногда вязкость крови повышается за счет склеивания тромбоцитов, прилипания их к стенке капилляров.
    Капилляры активно участвуют в обмене веществ между кровью и клетками организма, вступая с ними в непосредственный контакт. Таким образом, они являются не только частью кровеносной системы, но и неотъемлемой частью любого органа. Лишенная мышечных элементов стенка капилляра тонка и податлива. Она способна растягиваться, что значительно увеличивает просвет сосуда.
    В квадратном миллиметре мышечной ткани насчитывается 2000 капилляров. Много их в легких, сердце, печени, почках.
    И вместе с тем, как показывают исследования, каждый орган функционирует, используя не все свои микроциркуляторные возможности. Так, в легких обычно работает лишь одна треть микрососудов, а две трети находятся в резерве. Они вступают в действие при повышении мышечной нагрузки, а также во время болезни, когда возникает необходимость активизировать газообмен.
    Не меньшими резервами обладают и другие органы, которые мобилизуются, поддерживая состояние компенсации, когда организм борется с болезнью.
    При различных заболеваниях в первую очередь страдает микроциркуляторная система. В одних случаях усиливается или ослабляется тонус артериол или венул, в других — проницаемость капилляров, в третьих — изменяются свойства крови.
    В настоящее время врач имеет возможность с помощью совершенной техники получить полное представление о функции микрососудов, оценить происходящие в них изменения, а следовательно, и принять меры, направленные на нормализацию нарушенных функций.
    Для этого используют лекарственные средства, применяют физиотерапевтические процедуры, лечебную физкультуру. Специалисты располагают медикаментами, воздействующими на разные звенья микроциркуляции. С помощью, например, гипотензивных средств снижают тонус артериол. А если его необходимо, наоборот, повысить, применяют так называемые прессорные средства. Вместе с упорядочением кровотока в капиллярной сети улучшаются и обменные процессы.
    Когда развивается воспалительный процесс в органах и тканях, возникает необходимость воздействовать на проницаемость сосудистой стенки. Для этого используют комплекс медикаментов, включающий противовоспалительные средства, витамины, гормональные препараты.
    При пороках сердца, ишемической болезни сердца, воспалении миокарда ослабленная мышца сердца не справляется с нагрузкой. Снизить нагрузку, а значит, уменьшить приток крови к сердцу помогают лекарства, расширяющие периферические сосуды.
    У страдающих гипертонической болезнью наблюдаются изменения в стенках мелких сосудов, и они становятся более проницаемыми для белков крови. Белки пропитывают стенки артериол, из-за чего гибнет часть покрывающих сосуды эндотелиальных клеток, а на их месте разрастается соединительная ткань. Это влечет за собой усиление склеротических процессов. Разрастания соединительной ткани способны закрыть просвет сосудов сердца, почек, головного мозга. В результате нарушается кровообращение в этих органах. А при сужении сосудов почек начинает усиленно продуцироваться активное вещество — ренин, вызывающее еще более стойкое повышение артериального давления.
    В арсенале врача есть препараты, которые предупреждают нарушение функции микроциркуляторной системы, в частности закупорку сосудов микроциркуляторного русла. К ним относятся такие медикаменты, как антикоагулянты, разжижающие кровь, антиагреганты, препятствующие слипанию эритроцитов.
    Все это позволяет врачу своевременно на клеточном уровне воздействовать на патологический процесс, происходящий в организме, не допуская серьезных нарушений функции микроциркуляторной системы.

    Н. М. МУХАРЛЯМОВ
    Р. А. ГРИГОРЯНЦ

    Микроциркуляция I Микроциркуля́ция (греч. mikros малый + лат. circulatio круговращение)

    транспорт биологических жидкостей на уровне тканей организма: крови по микрососудам капиллярного типа (капиллярное ), перемещение интерстициальной жидкости и веществ по межклеточным пространствам и транспорт лимфы по лимфатическим микрососудам. Термин введен американскими исследователями в 1954 г. с целью интеграции методических подходов и сведений, которые относились преимущественно к капиллярному кровотоку (см. Кровообращение). Развитие этого направления привело к представлениям о М. как о сложной системе, интегрирующей деятельность трех подсистем (отсеков, или компартментов): гемомикроциркуляторной, лимфоциркуляторной и интерстициальной. Основной задачей системы М. в организме является поддержание динамического равновесия объемных и массовых параметров жидкости и веществ в тканях - обеспечение гомеостаза внутренней среды. М. осуществляет транспорт крови и лимфы по микрососудам, перенос газов (см. Газообмен), воды, микро- и макромолекул через биологические барьеры (стенки капилляров) и движение веществ во внесосудистом пространстве.

    Центральное звено системы - кровеносные и лимфатические , самые тонкостенные сосуды диаметром 3-5 до 30-40 мкм (рис. 1, 2 ). являющиеся важнейшим компонентом биологических барьеров. Стенки кровеносных капилляров, сформированные в основном из специализированных эндотелиальных клеток (рис. 3 ), допускают избирательное снабжение рабочих элементов ткани кислородом, ионами. биологически активными молекулами, плазменными протеинами и другими веществами, циркулирующими в крови. Лимфатические капилляры (см. Лимфатическая система), стенки которых также образованы эндотелием, эвакуируют из тканей избыток жидкости, молекулы белка и продукты обмена клеток. Состояние капиллярного кровообращения определяют резистивные микрососуды - артериолы и прекапилляры, имеющие гладкие мышечные клетки. Последние обеспечивают изменения величины рабочего просвета сосудов и, следовательно, объема крови, поступающего в капилляры. Из капилляров собирается в емкостные сосуды - посткапилляры и венулы, которые также включены в процессы транспорта веществ. Пути внекапиллярного кровотока (анастомозы, шунты) участвуют в кровенаполнении капилляров. Транспорт веществ через эндотелиальную выстилку кровеносных и лимфатических сосудов капиллярного типа (сосудистая ) осуществляется посредством межклеточных контактов, открытых и диафрагмированных фенестр и , а также системой плазмолеммальных , или инвагинаций (рис. 4 ). Многочисленность структур, образованных клеточной мембраной (см. Мембраны биологические), служит отличительным признаком эндотелиальных клеток. Основной движущей силой, доставляющей тканям кровь и обеспечивающей продвижение интерстициальной жидкости и лимфы, является пропульсивная деятельность сердца.

    С функциональной точки зрения все транспортные процессы в системе М. взаимосвязаны и взаимообусловлены. Эта взаимосвязь достигается благодаря градиентам сил (давлений) и концентраций на уровне эндотелиальных барьеров, разделяющих компартменты, и в каждом из них. Кровь как сложная гетерогенная корпускулярной природы имеет реологические свойства, существенно отличающие ее от других жидкостей. На условия гемодинамики в системе М. оказывают влияние не только структурные механизмы микроциркуляторного русла, но и агрегатное состояние крови, взаимодействие между форменными элементами и циркулирующей плазмой. Гемодинамические параметры в микрососудах тесно связаны с проницаемостью их стенок, а последняя отражает градиенты сил и концентрацию белков в интерстиции. В свою очередь, условия, существующие в интерстициальном окружении лимфатических капилляров, формируют механизмы лимфообразования и продвижения лимфы. М. как основная система, интегрирующая жизнедеятельность тканей, регулируется преимущественно местными механизмами контроля - медиаторным, миогенным. Нервные и гуморальные влияния реализуются на уровне гладкомышечного аппарата резистивных микрососудов и в сокращении эндотелиальных клеток. В деятельности системы М. очень эффективно проявляется принцип саморегуляции, в соответствии с которым изменения функциональных параметров в каждом из трех компартментов и на границах между ними существенно влияют на транспортные явления в соседних отсеках. Саморегуляторный механизм обеспечивает, в частности, защиту тканей от избыточного поступления и накопления жидкости. Недостаточность какого-либо звена этого механизма и невозможность ее компенсации приводит к тканевому отеку - одному из наиболее распространенных синдромов при многих патологических состояниях.

    Основные параметры, характеризующие функционирование системы М., определяются условиями гемодинамики на уровне капилляров, проницаемостью их стенок, силами, обеспечивающими движение интерстициальной жидкости и лимфы. Скорость кровотока в капиллярах обычно не превышает 1 мм/с , причем движутся несколько быстрее плазмы. Гидростатическое давление в сосудах капиллярного типа в разных органах регистрируется в диапазоне 18-40 мм рт. ст . Как правило, оно несколько превосходит коллоидно-осмотическое давление белков плазмы (19-21 мм рт. ст .), благодаря чему давления через стенки капилляров направлен в сторону ткани и фильтрация жидкости доминирует реабсорбцией ее в плазму. Избыточный объем поступающей в жидкости реабсорбируется корнями лимфатической системы или используется на образование секретов, например в пищеварительных железах. Гидравлическая стенок кровеносных микрососудов, т.е. проницаемость для воды, колеблется в зависимости от их характера (артериальные или венозные капилляры, венулы) и органной принадлежности. В капиллярах с непрерывным эндотелием ( , кожа, сердце, ц.н.с.) она варьирует в пределах (1-130)․10 -3 мкм/с․мм рт. ст . Величина проводимости фенестрированного эндотелия ( , слизистая оболочка кишки, железы) обычно на 2-3 порядка выше. Другой важный параметр, характеризующий способность капиллярной стенки пропускать вещества, растворимые в воде, - коэффициент осмотического отражения - является безразмерной величиной и не превышает 1. Его значения особенно важны для оценки проницаемости эндотелия по отношению к белкам плазмы крови. В стенке капилляров коэффициент отражения белков типа альбумина составляет 0,7-0,9. Это означает, что проницаемость капиллярного эндотелия для макромолекул невелика; для ионов и небольших молекул значения коэффициента отражения близки к 0,1. Еще один параметр - коэффициент проницаемости для ионов К + , Na+ имеет величину порядка 10 -5 см/с . Для молекул средней массы ( , аминокислоты) он несколько меньше.

    Величина гидростатического давления интерстициальной жидкости (в межклеточном пространстве) оценивается обычно как близкая к нулю, т.е. мало отличающаяся от величины атмосферного давления. При некоторых методах измерения регистрируются значения меньше, чем атмосферное давление: -6 -8 мм рт. ст . Хотя проницаемость стенок капилляров для белков ограничена, их содержание в тканях составляет 30-40% всей массы циркулирующего в организме протеина. Коллоидно-осмотическое давление в интерстициальной жидкости достигает 10 мм рт. ст. Низкое гидростатическое давление и высокое коллоидно-осмотическое в интерстициальном пространстве способствуют фильтрации жидкости в ткань и поступлению туда веществ, растворенных в плазме крови. Градиенты давления в интерстиции вызывают перемещение растворов в нем и тем самым доставку необходимых продуктов к рабочим клеткам. Плазменные , которые также поступают в межклеточную среду, эвакуируются в основном лимфатическими капиллярами. Давление в их просвете, по-видимому, мало отличается от атмосферного, т. е. по отношению к давлению крови близко к нулю. По мере продвижения лимфы по сосудам оно несколько увеличивается и на выходе из системы М. может достигать 14-16 мм рт. ст. Хотя механизмы перемещения лимфы в микрососудах еще недостаточно ясны, показано, что большую роль играют сокращения крупных лимфатических сосудов (лимфангионов), имеющих развитую мышечную оболочку.

    Наряду с обеспечением процессов обмена веществ между плазмой (лимфой) и рабочими элементами ткани система М. выполняет и другие функции, жизненно необходимые для нормальной деятельности организма. Суммарная масса эндотелиальных клеток в организме взрослого человека достигает 1,5-2 кг , а величина клеточной поверхности вообще экстраординарна и, по-видимому, близка к 1000 м 2 . На этой обширной поверхности протекает ряд важнейших биохимических реакций, например превращение неактивной формы ангиотензина I в активную - II. Конвертирующий синтезируется эндотелиальными клетками (особенно в микрососудах легких) и затем экспонируется на их поверхности. С помощью эндотелия капилляров дезактивируются биогенные - , серотонин; на эндотелии сорбируется практически весь циркулирующий в плазме и другие биологически активные молекулы. Чрезвычайно важна роль эндотелия в синтезе простагландинов, особенно PGI 2 (простациклина), который поддерживает тромборезистентность эндотелиальной поверхности. Таким путем, а также благодаря синтезу эндотелием ряда факторов гемостаза и фибринолиза достигается тесная функциональная связь между М. и системой свертывания крови (см. Свертывающая система крови (Свёртывающая система крови)). Эндотелиальные клетки синтезируют также большой молекул соединительной ткани - , коллагены, фибронектин, ламинин и др. Обширный спектр клеточных рецепторов на эндотелиальной поверхности обеспечивает избирательную адсорбцию веществ и регуляцию специфических реакций эндотелиальных клеток.

    Местные или генерализованные расстройства М. возникают практически при всех заболеваниях. В соответствии с функциональными свойствами системы М. эти расстройства проявляются комплексом различных синдромов. Так, при Шок е разной этиологии ведущее патогенетическое значение приобретают явления гипоперфузии ткани, т.е. недостаточности капиллярного кровообращения, и эритроцитов - образование их конгломератов разной величины и плотности. Нарушения проницаемости стенок микрососудов для жидкости и белка, как и лейкоцитарная в очаге острого воспаления, является результатом специфического реагирования М. в условиях сложного баланса медиаторов: гистамина, серотонина, системы комплемента, производных арахидоновой кислоты, активных форм кислорода и других (см. Воспаление). Стойкое резистивных микрососудов - артериол, и структурные трансформации их стенок служат эффекторным механизмом развития гипертензионного синдрома. На уровне М. и при ее непосредственном участии развиваются такие тяжелые состояния, как диссеминированного внутрисосудистого свертывания (см. Тромбогеморрагический синдром). При развитии патологических состояний синдромы микроциркуляторных расстройств часто комбинируются в различных сочетаниях и проявляются с разной интенсивностью.

    Методы изучения М. включают, помимо традиционного гистологического исследования, изучение с помощью электронного микроскопа, а также прижизненную микроскопическую диагностику нарушений кровотока (изучение капилляров ногтевого валика, конъюнктивы, десны, слизистых оболочек). В офтальмологии широко используется сосудов глазного дна, позволяющая при введении в кровь люминесцентных индикаторов оценивать не только внешний , но и проницаемость сосудов. С этой целью применяют также подкожную пробу Лендиса - определение проницаемости капилляров по величине фильтрации жидкости и белка из капиллярной крови в условиях повышенного гидростатического давления. Индикатором состояния водного баланса в тканях может служить величина интерстициального давления. Для суммарной оценки тканевого кровотока, экстракции из крови и клиренса различных веществ все более широко применяют радионуклидные методы. В клиническую практику внедряют вискозиметры для изучения агрегатного состояния крови при различных скоростях сдвига. В медико-биологических экспериментальных исследованиях методические возможности изучения М. более обширны и информативны. Практически все важнейшие параметры, отражающие функции системы М., доступны для количественного анализа.

    Библиогр.: Джонсон П. Периферическое , пер. с англ., М., 1982; Куприянов В.В. Система микроциркуляции и микроциркуляторное русло, . анат., гистол. и эмбриол., т. 62, № 3, с. 14, 1972; Куприянов В.В. и др. Микролимфология, М., 1953, библиогр.; Левтов В.А., Регирер А. и Шадрина Н.X. крови, М., 1982, библиогр.; Орлов Р.С., Борисов А.В. и Борисова Р.П. Лимфатические сосуды, Л., 1983; Руководство по физиологии. кровообращения. Физиология сосудистой системы, под ред. П.Г. Костюка, с. 5, 307, Л., 1984. Сосудистый , под ред. В.В. Куприянова и др., с 44, Киев, 1986; Чернух А М., Александров П.Н. и Алексеев О.В. Микроциркуляция, М., 1975, библиогр.

    Рис. 2. Микропрепарат лимфатического капилляра среди кровеносных микрососудов (стрелкой указана эндотелиальная клетка); импрегнация серебром.

    II Микроциркуля́ция (Микро- + циркуляция )

    1) процесс направленного различных жидкостей организма на уровне тканевых микросистем, ориентированных вокруг кровеносных и лимфатических микрососудов;

    2) кровообращение по мелким артериям, артеориолам, капиллярам, венулам и мелким венам.


    1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

    Синонимы :

    Смотреть что такое "Микроциркуляция" в других словарях:

      Микроциркуляция … Орфографический словарь-справочник

      - (от микро... и лат. circulatio врашение, круговорот), транспорт крови в системе мелких кровеносных сосудов (артериол, венул, капилляров). В процессе М. происходит обмен веществами между жидкостью внутри капилляров и содержимым тканевых… … Биологический энциклопедический словарь

      Сущ., кол во синонимов: 1 циркуляция (10) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

      - (др. греч. μικρός «малый» + лат. circulatio «круговращение») транспорт биологических жидкостей на тканевом уровне. Это понятие включает в себя капиллярное кровообращение (движение крови по микрососудам капиллярного типа) … Википедия

      - (микро + циркуляция) 1) процесс направленного движения различных жидкостей организма на уровне тканевых микросистем, ориентированных вокруг кровеносных и лимфатических микрососудов; 2) кровообращение по мелким артериям, артериолам, капиллярам,… … Большой медицинский словарь

      микроциркуляция - микроциркул яция, и … Русский орфографический словарь

    Термином «микроциркуляция» обозначают ток крови и лимфы по мельчайшим кровеносным и лимфатическим сосудам, питающим любой орган, а также транспорт воды, газов и различных веществ (в том числе и лекарственных) между микрососудами и интерстициальным пространством.

    Микрососуды - это главное звено сосудистой системы. Они выполняют целый ряд функций:

      Участвуют в перераспределении крови в организме в зависимости от его потребностей.

      Создают условия для обмена веществ между кровью и тканями.

      Играют компенсаторно-приспособительную роль при воздействии экстремальных факторов среды - переохлаждение, перегревание и др.

    В состав внутриорганного микроциркуляторного русла входят следующие сосуды: артериолы, прекапилляры, или метаартериолы, прекапиллярные сфинктеры, капилляры, посткапиллярные венулы, венулы и артериовенозные анастомозы. К кровеносным сосудам, расположенным в интерстициальном пространстве, примыкают замкнутые лимфатические капилляры и мелкие лимфатические сосуды. Совокупность всех вышеперечисленных элементов микро-циркуляторного русла называется микроциркуляторной единицей, или «модулем» (рис.16). Артериолы- это тонкие сосуды диаметром 70 мкм, содержат кольцевой слой гладких мышц, сокращение которых создает значительное сопротивление кровотоку, поэтому их называют резистивными сосудами. Их функция - регуляция уровня АД в артериях. При уменьшении просвета артериолы АД в артериях увеличивается, при увеличении - падает. И.М. Сеченов назвал артериолы «кранами сосудистой системы». Артериальное давление в артериолах равно 60 -80 мм рт.ст

    Рис. 16. Схема артериовенозного анастомоза

    Прекапилляры, или метаартериолы, имеют диаметр от 7 до 16 мкм. В них отсутствуют эластические элементы, но их мышечные клетки обладают автоматией, т.е. способностью спонтанно генерировать импульсы. Их особенность - большая чувствительность к химическим веществам, в том числе к сосудосуживающим и сосудорасширяющим.

    Каждый прекапилляр заканчивается прекапиллярным сфинктером. Это последнее звено, в котором встречаются гладкомышечные клетки. От состояния сфинктера зависит число открытых и закрытых капилляров и появление так называемых «плазменных» капилляров, по которым протекает только плазма без форменных элементов, например, после кровопотери, при малокровии. Прекапиллярные сфинктеры также находятся преимущественно под контролем гуморальных факторов и химических веществ, растворенных в крови. Так, хорошо известный антагонист кальция - нифедипин (коринфар), а также бета-адреноблокатор - анаприлин (обзидан) расширяют прекапиллярные сфинктеры, улучшают капиллярную фильтрацию и снижают артериальное давление.

    Капилляры - самое важное звено в системе микроциркуляции, это обменные сосуды, обеспечивающие переход газов, воды, питательных веществ из сосудистого русла в ткани и из тканей в сосуды. Всего у человека 40 млрд капилляров. Капилляры - это тончайшие сосуды диаметром 5 - 7 мкм и длиной от 0,5 до 1,1 мм. Они тесно примыкают к клеткам органов и тканей, образуя обширную обменную поверхность, равную 1000 - 1500 м 2 , хотя в них и содержится всего 200 - 250 мл крови. Капилляр не имеет сократительных элементов, у него 2 оболочки: внутренняя - эндотелиальная и наружняя - базальная, в которую впаяны клетки-перициты.

    Различают три типа капилляров: 1. Соматический - эндотелий капилляра не имеет фенестр и пор, а базальный слой непрерывный (капилляры скелетных и гладких мыщц, кожи, коры больших полушарий). Капилляры данного типа непроницаемы или почти непроницаемы для крупных молекул белка, но хорошо пропускают воду и растворенные в ней минеральные вещества. 2. Висцеральный - имеет фенестрированный эндотелий и сплошную базальную мембрану. Этот тип капилляров расположен в органах (почки, кишечник, эндокринные железы), секретирующих и всасывающих большие количества воды с растворенными в ней веществами. 3. Синусоидный - это капилляры с большим диаметром, между эндотелиоцитами имеются щели, базальная мембрана прерывиста или может полностью отсутствовать. Через их стенки хорошо проникают макромолекулы и форменные элементы крови. Такого типа капилляры находятся в печени, костном мозге, селезенке.

    Количество функционирующих капилляров зависит от состояния органа. Так, в покое открыто только 25 - 35% всех капилляров. Кровь поступает в капилляр под давлением 30 мм рт.ст., а выходит под давлением 10 мм рт.ст. и течет по капилляру с очень маленькой скоростью, всего 0,5 мм/с, что создает благоприятные условия для протекания обменных процессов между кровью и тканями.

    Посткапиллярные венулы - это первое звено емкостной части микроциркуляторного русла. Наряду с эндотелиальными и гладкомышечными клетками в стенке вен появляются соединительнотканные элементы, придающие ей большую растяжимость. Диаметр этих сосудов составляет от 12 мкм до 1 мм, давление - 10 мм рт.ст., скорость кровотока - 0,6-1 мм/с. Посткапиллярные венулы наряду с капиллярами относят к обменным сосудам, через стенку которых способны проходить высокомолекулярные вещества.

    Артериовенозные анастомозы, или шунты - это сосуды, соединяющие артериолу с венулой, минуя или в обход капиллярной сети. Они находятся в коже, легких, почках, печени, имеют гладкомышечные элементы и, в отличие от других сосудов, большое количество рецепторов и нервных окончаний, обеспечивающих регуляцию кровотока. Основные функции анастомозов заключаются: 1) в перераспределении крови к работающему органу, 2) оксигенации венозной крови; 3) поддержании постоянной темпера­туры в данном органе или участке тела - терморегуляторная функция; 4) увеличении притока крови к сердцу.

    В системе микроциркуляции различают два вида кровотока:

    1. Медленный, транскапиллярный, преобладает в состоянии покоя, обеспечивает обменные процессы. 2. Быстрый, юкстакапиллярный, через артериовенозные анастомозы, преобладает в состоянии функциональной активности, например, в мышцах при физической нагрузке. Так, 1 мл крови проходит через капилляры за 6 ч, а через артериовенозные анастомозы - всего за 2 с.